
Òåîðåòè÷åñêàÿ è ñèñòåìíàÿ èíôîðìàòèêà

Ïðèêëàäíûå èíôîðìàöèîííûå òåõíîëîãèÈ

3

2025

Ï
ð

î
á

ë
å
ì

û
è

í
ô

î
ð

ì
à

ò
è

ê
è

¹
2

0
3

2
5



ПРОБЛЕМЫ ИНФОРМАТИКИ № 3 (68) 2025 г.
Журнал выходит ежеквартально, издается с 2008 г.

Учредитель журнала — Институт вычислительной математики и математической
геофизики СО РАН.

Редакционный совет

Председатель — акад. НАН РК М.Н. Калимолдаев,
акад. РАН А.Л. Асеев, проф. В.А. Васенин, акад. РАН С.Н. Васильев,
проф. B.М. Вишневский, акад. РАН С.С. Гончаров, акад. РАН Н.А. Колчанов,
акад. РАН Н.А. Кузнецов, акад. РАН А.П. Кулешов, проф. РАН М.А. Марченко,
проф. А. Г. Марчук, А.Ю. Пальянов, проф. Б.Я. Рябко, акад. РАН И.А. Соколов,
проф. А.Н. Сотников, чл.-кор. РАН Ю.А. Флеров.

Редколлегия

Главный редактор — проф. В.Э. Малышкин,
Д.А. Афонников, Д.Ж. Ахмед-Заки, А. Г. Вострецов, Б.С. Гольдштейн, В.И. Гужов,
Ю.А. Загорулько, В.А. Иванисенко, С.Д. Каракозов, В.Н. Касьянов, О.В. Кибис,
В.В. Корнеев, И.В. Котенко, И.М. Куликов, М. Г. Курносов, С.А. Лашин, Т.П. Любимова,
А.Н. Ляхов, Ю.Г. Матушкин, В.В. Окольнишников, Б.В. Поллер, М.П. Пономаренко,
А.С. Родионов (зам. гл. редактора), А.Н. Савостьянов, М.А. Сонькин, В.В. Шахов (зам. гл.
редактора), М.С. Хайретдинов, И. Г. Черных, Moonseong Kim (Korea), V.D. Nguyen (Vietnam),
Michele Pagano (Italy).

Редакция: отв. секретарь М.С. Делидович, системный администратор В.А. Перепелкин,
верстка Д.В. Лазуткин, логист Л.В. Трофимова.

Адрес редакции, издателя: 630090, г. Новосибирск, просп. Академика Лаврентьева, д. 6,
ИВМиМГ СОРАН
тел. (383) 330-96-43; e-mail: problem-info@sscc.ru, http://www.problem-info.sscc.ru.

Журнал зарегистрирован в Федеральной службе по надзору в сфере массовых коммуникаций,
связи и охраны культурного наследия. Свидетельство ПИ № ФС77-32088 от 27 мая 2008 г.
Журнал распространяется по подписке. Оформление подписки на сайте «Объединенного
каталога „Пресса России“» https://www.pressa-rf.ru/cat/1/edition/y_e69980/, подписной
индекс 69980, и через интернет-магазин «Пресса по подписке»
https://www.akc.ru/itm/problemy_i-informatiki/. Цена свободная. Журнал
распространяется на территории России.

Журнал включен в Перечень ведущих рецензируемых научных журналов,

рекомендованных для публикаций Высшей аттестационной комиссией. Входит в

«Белый список» Единого государственного перечня научных изданий (ЕГПНИ).

Все права авторов сохранены.Использование материалов журнала возможно только
с разрешения редакции и авторов.

Отпечатано в типографии «АЛЕКСПРЕСС» ИП Малыгин Алексей Михайлович.
Адрес: 630090, Новосибирск, пр-т Академика Лаврентьева, 6/1, оф. 104, тел. +7 (383) 217-43-46.
Формат 60× 84 1/8. Усл. печ. л. 11,63. Печать офсетная.

Тираж 50 экз. Заказ № 1006. Подписано в печать 26.09.2025 г. Âûõîä â ñâåò 30.09.2025 ã.

© Èíñòèòóò âû÷èñëèòåëüíîé ìàòåìàòèêè è ìàòåìàòè÷åñêîé ãåîôèçèêè ÑÎ ÐÀÍ, 2025



JOURNAL “PROBLEMS OF INFORMATICS”. No. 3 (68) 2025

Publisher: Institute of Computational Mathematics and Mathematical Geophysics of Siberian Branch

of Russian Academy of Sciences.

Editorial Council

Chairman Academician of the National Academy of Sciences of the Republic of Kazakhstan

M.N. Kalimoldayev

Full Member of the RAS A. L. Aseev, Professor V.A. Vasenin, Full Member of RAS C.N. Vassilyev,

Professor V.M. Vishnevsky, Full Member of RAS S. S. Goncharov, Full Member of RAS

N.A. Kolchanov, Full Member of RAS N.A. Kuznetsov, Full Member of RAS A.P. Kuleshov,

Professor of RAS M.A. Marchenko, Professor A.G. Marchuk, A.YU. Palyanov, Professor

B.Y. Ryabko, Full Member of RAS I.A. Sokolov, Professor A.N. Sotnikov, Corr. Member RAS

Y.A. Flerov.

Editorial board

The Editor-in-Chief Professor V. E. Malyshkin

Associate Editors-in-Chief: A. S. Rodionov, V.V. Shakhov

D.A. Afonnikov D. Zh. Akhmed-Zaki, А.G. Vostretsov, B. S. Goldstein, V. I. Guzhov,

Y.A. Zagorulko, V.A. Ivanisenko, S.D. Karakozov, V.N. Kasyanov, О.V. Kibis, V.V. Korneev,

I. V. Kotenko, I.M. Kulikov, M.G. Kurnosov, S.A. Lashin, T. P. Lyubimova, A. I. Lyakhov,

V.V. Okolnishnikov, B.V. Poller, M.P. Ponomarenko, A.N. Savostyanov, M.A. Sonkin,

М. S. Khairetdinov, I.G. Chernykh, Moonseong Kim (Korea), Van Duc Nguyen (Vietnam),

Michele Pagano (Italy).

Editorial staff: Managing Editor M. S. Delidovich, System Administrator V.A. Perepelkin,

Maker-up D.V. Lazutkin, Logistician L.V. Trofimova.

Address of the editorial office: 630090, pr. Lavrentieva, 6, Novosibirsk, Russia, Institute of

Computational Mathematics and Mathematical Geophysics of SB RAS.

Phone: +7 (383) 330-96-43; e-mail: problem-info@sscc.ru, http://www.problem-info.sscc.ru.

The journal has been registered in accordance with Legislation of the Russian Federation. Certificate

of Mass Media Registration: ПИ № ФС77-32088, of 27 May, 2008, ISSN 2073-0667. The journal is

distributed in Russia.

The journal “Problems of Informatics” is in the List of Peer-Reviewed Scientific Journals for

publication of scientific results of Ph.D. and Dr. of Sci.

All rights reserved. The journal contents may only be used by the permission of editors and authors.

© Institute of Computational Mathematics and Mathematical Geophysics of Siberian Branch of

Russian Academy of Sciences, 2025



СОДЕРЖАНИЕ

Теоретическая и системная информатика

Алеева В.Н., Сапожников А.С. Ýôôåêòèâíàÿ ðåàëèçàöèÿ àëãîðèòìîâ îáó÷åíèÿ íåéðîí-
íûõ ñåòåé ñ ïîìîùüþ êîíöåïöèè 𝑄-äåòåðìèíàíòà . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Рахмани Д., Байбара Б.В., Тетов С. Г. Óÿçâèìîñòè áîëüøèõ ÿçûêîâûõ ìîäåëåé: àíàëèç
è ìåòîäû çàùèòû . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17

Малышкин В.Э., Перепелкин В.А., Нуштаев Ю.Ю. Óìåíüøåíèå íàêëàäíûõ ðàñõîäîâ
íà âûçîâ ìîäóëåé â àâòîìàòè÷åñêè êîíñòðóèðóåìûõ ïðîãðàììàõ íà îñíîâå êîíöåïöèè àê-
òèâíûõ çíàíèé . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Прикладные информационные технологии

Бобохонов А., Хурамов Л., Рашидов А. Âûÿâëåíèå êîæíûõ çàáîëåâàíèé ïî èçîáðàæåíèÿì
ñ èñïîëüçîâàíèåì ìåòîäîâ ìàøèííîãî îáó÷åíèÿ è ãëóáîêîãî îáó÷åíèÿ . . . . . . . . . . . . . . . . . 52

Юртин A.А. Ìåòîä ïðîãíîçèðîâàíèÿ îøèáêè âðåìåíè îáó÷åíèÿ íåéðîñåòåâûõ ìîäåëåé
âîññòàíîâëåíèÿ ìíîãîìåðíûõ âðåìåííûõ ðÿäîâ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Ïðàâèëà ïðåäñòàâëåíèÿ è ïîäãîòîâêè ðóêîïèñåé äëÿ ïóáëèêàöèè
â æóðíàëå ¾ÏÐÎÁËÅÌÛ ÈÍÔÎÐÌÀÒÈÊÈ¿ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96

ПРОБЛЕМЫ ИНФОРМАТИКИ
№ 3 (68) 2025 г.



CONTENTS

Theoretical informatics

Aleeva V.N., Sapozhnikov A. S. E�cient Implementation of Neural Network Learning
Algorithms Using the Concept of a 𝑄-determinant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Rahmani J., Baibara B.V., Tetov S.G. Vulnerabilities of Large Language Models: Analysis
and Protection Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Malyshkin V. E., Perepelkin V.A., Nushtaev Yu.Yu. Reduction of Invocation Overhead in
Automatically Generated Programs with the Active Knowledge Concept . . . . . . . . . . . . . . . . . . 34

Applied information technologies

Bobokhonov A., Xuramov L., Rashidov A. Detection of Skin Diseases from Images Using
Machine Learning and Deep Learning Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Yurtin A.A. A Method for Forecasting the Error and Training Time of Neural Networks for
Multivariate Time Series Imputation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Rules of Presentation and Preparation of Manuscripts O�ered for Publication . . . . . . . . . . . . . 96

PROBLEMS OF INFORMATICS
N 3 (68) 2025



Problems of Informatics. 2025. № 3

EFFICIENT IMPLEMENTATION OF NEURAL NETWORK
LEARNING ALGORITHMS USING THE CONCEPT OF A
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The paper is the first to consider an efficient implementation of neural network learning algorithms
using the concept of a 𝑄-determinant. Let’s describe the necessary information about the concept of
the 𝑄-determinant. These are the following notions.

Let 𝐵 be the input data of the algorithm, and 𝑄 be the operations used by the algorithm. An
expression over 𝐵 and 𝑄 is a term in the standard sense of mathematical logic. A chain of length 𝑛 is
the result of applying some associative operation from 𝑄 to 𝑛 expressions. Let’s define an algorithm
for solving an algorithmic problem with a set of parameters of dimension 𝑁 . If this problem has no
dimension parameters, then 𝑁 = ∅. Otherwise, 𝑁 = {𝑛1, . . . ,𝑛𝑘} is a set of dimension parameters for
this problem. Let the set 𝑁̄ = {𝑛̄1, . . . ,𝑛̄𝑘} consists of the specified values of the dimension parameters
and {𝑁̄} is the set of all such tuples of 𝑁̄ .

Now let’s define the concept of a 𝑄-term, which can be unconditional, conditional and conditional
infinite. If 𝑁 = ∅, then any expression 𝑤 over 𝐵 and 𝑄 is an unconditional 𝑄-term. If 𝑁 ̸= ∅ and
𝑉 is the set of all expressions over 𝐵 and 𝑄, then any mapping 𝑤 :

{︀
𝑁̄
}︀
→ 𝑉 ∪ ∅ is also called an

unconditional 𝑄-term. 𝑤(𝑁̄) = ∅ means that the value of 𝑤(𝑁̄) is undefined. A conditional 𝑄-term
consists of a finite or countable set of pairs of unconditional 𝑄-terms, and in each pair the first 𝑄-term
has a logical type. Therefore, they will be called logical 𝑄-terms. If the number of pairs in a 𝑄-term is
infinite, then it is called an infinite conditional 𝑄-term.

We can calculate the value of the 𝑄-term given the input data. Let 𝑚 be the number of output
variables. Let the algorithm calculate the values of each output variable 𝑦𝑖 (𝑖 ∈ {1, . . . ,𝑚}) if the value
of the corresponding 𝑄-term 𝑓𝑖 (𝑖 ∈ {1, . . . ,𝑚}) is calculated. Then the set of 𝑄-terms {𝑓𝑖}𝑖∈{1,...,𝑚} is
called the 𝑄-determinant of the algorithm. The system of equations 𝑦𝑖 = 𝑓𝑖 (𝑖 ∈ {1, . . . ,𝑚}) is called
the representation of the algorithm in the form of a 𝑄-determinant.

The process of computing 𝑄-terms {𝑓𝑖}𝑖∈{1,...,𝑚} is called an implementation of algorithm.
An implementation of an algorithm is called parallel if there are operations that are executed
simultaneously. An implementation of an algorithm is called 𝑄-effective if 𝑄-terms {𝑓𝑖}𝑖∈{1,...,𝑚} are
computed simultaneously, operations are executed as they are ready, and chain operations are computed
using the doubling scheme. A 𝑄-effective implementation of the algorithm uses parallelism resource of
this algorithm completely. The height and width of the algorithm characterize its parallelism resource. If
a finite number of operations are performed simultaneously during the implementation of the algorithm,
then this implementation of the algorithm is called realizable.

In this paper we describe a method for designing 𝑄-effective programs that use the parallelism
resource of algorithms completely. This method is used for effective implementation of algorithms.

© V.N. Aleeva, A. S. Sapozhnikov, 2025
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It has three steps: construction of the 𝑄-determinant of the algorithm, description of the 𝑄-
effective implementation of the algorithm, development of a program for an realizable 𝑄-effective
implementation of the algorithm. A program is called 𝑄-effective if it is developed using this method.
A program is also called 𝑄-effective if it performs a 𝑄-effective implementation of an algorithm. The
same set of programs corresponds to these two definitions.

The application of the method of designing 𝑄-effective programs is shown on the example of
algorithms implementing stochastic gradient descent and error back propagation methods. These
methods are often used to learn neural networks. 𝑄-effective programs for shared and distributed
memory parallel computing systems have been developed that implement these methods. The
acceleration and efficiency of the developed programs have been evaluated using computational
experiments. Computational experiments were performed on the supercomputer «Tornado» of the
South Ural State University. We present conclusions based on the obtained evaluation of the dynamic
characteristics of the developed programs. The values of the dynamic characteristics of a 𝑄-effective
program depend on the implemented algorithm and the conditions of development and execution of the
program. The paper provides a recommendation to the developer of a 𝑄-effective program in the case
where he wants to improve the values of the dynamic characteristics of the program being developed.

Therefore, the research shows that the method of designing 𝑄-effective programs can be applied to
efficiently implement neural network learning algorithms.

Key words: neural network learning, stochastic gradient descent method, error back
propagation method, 𝑄-determinant of algorithm, 𝑄-effective implementation of algorithm, 𝑄-effective
program.
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EDN: NGOUCS

В статье впервые рассматривается эффективная реализация с помощью концепции 𝑄-
детерминанта алгоритмов обучения нейронных сетей. Для эффективной реализации алгорит-
мов применяется метод проектирования 𝑄-эффективных программ, использующих ресурс па-
раллелизма реализуемых ими алгоритмов полностью. Применение метода показано на примере
алгоритмов, выполняющих часто используемые методы стохастического градиентного спус-
ка и обратного распространения ошибки. Для этих алгоритмов разработаны 𝑄-эффективные
программы для общей и распределенной памяти параллельных вычислительных систем. С по-
мощью вычислительных экспериментов выполнена оценка ускорения и эффективности разра-
ботанных программ. Вычислительные эксперименты проводились на суперкомпьютере «Тор-
надо» Южно-Уральского государственного университета.

Ключевые слова: обучение нейронных сетей, метод стохастического градиентного спуска,
метод обратного распространения ошибки, 𝑄-детерминант алгоритма, 𝑄-эффективная реали-
зация алгоритма, 𝑄-эффективная программа.

Введение. Ïðîáëåìà ýôôåêòèâíîé ðåàëèçàöèè àëãîðèòìîâ, â òîì ÷èñëå, èñïîëüçóå-
ìûõ äëÿ ðåøåíèÿ çàäà÷ èñêóññòâåííîãî èíòåëëåêòà, ÿâëÿåòñÿ àêòóàëüíîé. Ïîäõîä, îñíî-
âàííûé íà êîíöåïöèè 𝑄-äåòåðìèíàíòà, ÿâëÿåòñÿ îäíèì èç ïîäõîäîâ ê ðåøåíèþ ýòîé ïðî-
áëåìû. Â ðàìêàõ äàííîãî ïîäõîäà áûë ðàçðàáîòàí ìåòîä ïðîåêòèðîâàíèÿ 𝑄-ýôôåêòèâíûõ
ïðîãðàìì, èñïîëüçóþùèõ ðåñóðñ ðåàëèçóåìûõ àëãîðèòìîâ â ïîëíîé ìåðå. Èññëåäîâàíèå,
îïèñàííîå â äàííîé ñòàòüå, ÿâëÿåòñÿ ïåðâûì èññëåäîâàíèåì ïî ýôôåêòèâíîé ðåàëèçàöèè
àëãîðèòìîâ, ïðèìåíÿåìûõ äëÿ ðåøåíèÿ çàäà÷ èñêóññòâåííîãî èíòåëëåêòà.

Öåëü èññëåäîâàíèÿ, îïèñàííîãî â ñòàòüå, çàêëþ÷àåòñÿ â òîì, ÷òîáû ïîêàçàòü ïðèìåíå-
íèå ìåòîäà ïðîåêòèðîâàíèÿ 𝑄-ýôôåêòèâíûõ ïðîãðàìì ê àëãîðèòìàì îáó÷åíèÿ íåéðîííûõ
ñåòåé. Îíà ïðåäïîëàãàåò ðåøåíèå ñëåäóþùèõ çàäà÷.

� Ðàçðàáîòêà 𝑄-ýôôåêòèâíûõ ïðîãðàìì äëÿ îáùåé è ðàñïðåäåëåííîé ïàìÿòè ïàðàë-
ëåëüíûõ âû÷èñëèòåëüíûõ ñèñòåì (ÏÂÑ), ðåàëèçóþùèõ ìåòîäû ñòîõàñòè÷åñêîãî ãðàäèåíò-
íîãî ñïóñêà è îáðàòíîãî ðàñïðîñòðàíåíèÿ îøèáêè.

� Îöåíêà óñêîðåíèÿ è ýôôåêòèâíîñòè ðàçðàáîòàííûõ 𝑄-ýôôåêòèâíûõ ïðîãðàìì ñ
ïîìîùüþ âû÷èñëèòåëüíûõ ýêñïåðèìåíòîâ íà ÏÂÑ.

Ñòàòüÿ îðãàíèçîâàíà ñëåäóþùèì îáðàçîì. Ðàçäåë 1 ñîäåðæèò òåîðåòè÷åñêèå îñíîâû
èññëåäîâàíèÿ.

© Â.Í. Àëååâà, À.Ñ. Ñàïîæíèêîâ, 2025
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Â ðàçäåëå 2 ïîêàçàíî ïðèìåíåíèå ìåòîäà ïðîåêòèðîâàíèÿ 𝑄-ýôôåêòèâíûõ ïðîãðàìì
äëÿ àëãîðèòìîâ îáó÷åíèÿ íåéðîííûõ ñåòåé. Â ðàçäåëå 3 îïèñàíû ðàçðàáîòêà è ýêñïå-
ðèìåíòàëüíîå èññëåäîâàíèå 𝑄-ýôôåêòèâíûõ ïðîãðàìì. Â çàêëþ÷åíèè ïîäâîäÿòñÿ èòîãè
èññëåäîâàíèÿ è ôîðìóëèðóåòñÿ íàïðàâëåíèå äàëüíåéøèõ èññëåäîâàíèé.

1. Теоретические основы исследования. Èññëåäîâàíèÿ äàííîé ñòàòüè áàçèðóþòñÿ
íà êîíöåïöèè𝑄-äåòåðìèíàíòà, êîòîðàÿ âïåðâûå áûëà èçëîæåíà â ðàáîòå [1]. Â äàëüíåéøåì
îíà ðàçâèâàëàñü è â íàñòîÿùåå âðåìÿ íàèáîëåå ïîëíî ïðåäñòàâëåíà â ðàáîòå [2]. Îïèøåì
êðàòêî ïîíÿòèÿ êîíöåïöèè 𝑄-äåòåðìèíàíòà, èñïîëüçóåìûå â äàííîé ðàáîòå.

Определение 1. Âûðàæåíèå íàä ìíîæåñòâîì âõîäíûõ äàííûõ 𝐵 àëãîðèòìà è ìíîæå-
ñòâîì îïåðàöèé 𝑄, èñïîëüçóåìûõ àëãîðèòìîì, îïðåäåëèì, êàê òåðì â ñòàíäàðòíîì ñìûñëå
ìàòåìàòè÷åñêîé ëîãèêè [3].

Определение 2. Öåïî÷êîé äëèíû 𝑛 áóäåì íàçûâàòü âûðàæåíèå, ïðåäñòàâëÿþùåå ñîáîé
ðåçóëüòàò ïðèìåíåíèÿ íåêîòîðîé àññîöèàòèâíîé îïåðàöèè èç 𝑄 ê 𝑛 âûðàæåíèÿì.

Ïóñòü𝑁 = {𝑛1, . . . ,𝑛𝑘}� ìíîæåñòâî ïàðàìåòðîâ ðàçìåðíîñòè àëãîðèòìè÷åñêîé ïðîáëå-
ìû, ðåøàåìîé àëãîðèòìîì. ×åðåç 𝑁̄ = {𝑛̄1, . . . ,𝑛̄𝑘} îáîçíà÷èì êîðòåæ, ãäå 𝑛̄𝑖 � íåêîòîðîå
çàäàííîå çíà÷åíèå ïàðàìåòðà 𝑛𝑖 äëÿ êàæäîãî 𝑖 ∈ {1, . . . ,𝑘}, à ÷åðåç {𝑁̄} ìíîæåñòâî âñåõ
êîðòåæåé 𝑁̄ . Àëãîðèòìè÷åñêàÿ ïðîáëåìà ìîæåò íå èìåòü ïàðàìåòðîâ ðàçìåðíîñòè. Â ýòîì
ñëó÷àå 𝑁 = ∅.

Îïðåäåëèì ïîíÿòèå 𝑄-òåðìà. 𝑄-òåðìû ìîãóò áûòü áåçóñëîâíûìè, óñëîâíûìè è óñëîâ-
íûìè áåñêîíå÷íûìè.

Определение 3. Åñëè 𝑁 = ∅, òî ëþáîå âûðàæåíèå 𝑤 íàä 𝐵 è 𝑄 íàçûâàåòñÿ áåçóñëîâíûì
𝑄-òåðìîì. Ïóñòü 𝑁 ̸= ∅ è 𝑉 � ìíîæåñòâî âñåõ âûðàæåíèé íàä 𝐵 è 𝑄. Ëþáîå îòîáðàæåíèå
𝑤 :

{︀
𝑁̄
}︀
→ 𝑉 ∪ ∅ òàêæå íàçûâàåòñÿ áåçóñëîâíûì 𝑄-òåðìîì. Çäåñü 𝑤(𝑁̄) = ∅ îçíà÷àåò,

÷òî çíà÷åíèå 𝑤(𝑁̄) íå îïðåäåëåíî.
Óñëîâíûå 𝑄-òåðìû ñîñòîÿò èç êîíå÷íîãî ìíîæåñòâà ïàð, à óñëîâíûå áåñêîíå÷íûå 𝑄-

òåðìû èç áåñêîíå÷íîãî ìíîæåñòâà ïàð áåçóñëîâíûõ 𝑄-òåðìîâ. Ïåðâûå áåçóñëîâíûå 𝑄-
òåðìû ïàð ïðèíèìàþò çíà÷åíèÿ ëîãè÷åñêîãî òèïà, ïîýòîìó íàçûâàþòñÿ ëîãè÷åñêèìè 𝑄-
òåðìàìè.

𝑄-òåðìû ìîæíî âû÷èñëÿòü.
Определение 4. Åñëè àëãîðèòì ñîñòîèò â òîì, ÷òî äëÿ âû÷èñëåíèÿ çíà÷åíèÿ êàæäîé

âûõîäíîé ïåðåìåííîé 𝑦𝑖 (𝑖 ∈ {1, . . . ,𝑚}) íóæíî âû÷èñëèòü çíà÷åíèå ñîîòâåòñòâóþùåãî
𝑄-òåðìà 𝑓𝑖 (𝑖 ∈ {1, . . . ,𝑚}), ãäå 𝑚 � êîëè÷åñòâî âûõîäíûõ ïåðåìåííûõ, òî ìíîæåñòâî
𝑄-òåðìîâ {𝑓𝑖}𝑖∈{1,...,𝑚} íàçûâàåòñÿ 𝑄-äåòåðìèíàíòîì àëãîðèòìà.

Определение 5. Ñèñòåìà óðàâíåíèé 𝑦𝑖 = 𝑓𝑖 (𝑖 ∈ {1, . . . ,𝑚}) íàçûâàåòñÿ ïðåäñòàâëåíèåì
àëãîðèòìà â ôîðìå 𝑄-äåòåðìèíàíòà.

Определение 6. Ïðîöåññ âû÷èñëåíèÿ 𝑄-òåðìîâ {𝑓𝑖}𝑖∈{1,...,𝑚} íàçûâàåòñÿ ðåàëèçàöèåé àë-
ãîðèòìà.

Определение 7. Ðåàëèçàöèÿ àëãîðèòìà íàçûâàåòñÿ ïàðàëëåëüíîé, åñëè ñóùåñòâóþò îïå-
ðàöèè, êîòîðûå âûïîëíÿþòñÿ îäíîâðåìåííî.

Определение 8. Ðåàëèçàöèÿ àëãîðèòìà íàçûâàåòñÿ 𝑄-ýôôåêòèâíîé, åñëè 𝑄-òåðìû
{𝑓𝑖}𝑖∈{1,...,𝑚} âû÷èñëÿþòñÿ îäíîâðåìåííî, îïåðàöèè ïðè èõ âû÷èñëåíèè âûïîëíÿþòñÿ ïî
ìåðå ãîòîâíîñòè, ïðè ýòîì, åñëè íåñêîëüêî îïåðàöèé öåïî÷êè ãîòîâû ê âûïîëíåíèþ, òî
îíè âûïîëíÿþòñÿ ïî ñõåìå ñäâàèâàíèÿ.

Замечание 1. Îïðåäåëåíèå 𝑄-ýôôåêòèâíîé ðåàëèçàöèè ïîêàçûâàåò, ÷òî îíà ïîëíîñòüþ
èñïîëüçóåò ðåñóðñ ïàðàëëåëèçìà àëãîðèòìà.
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Ðåñóðñ ïàðàëëåëèçìà àëãîðèòìà õàðàêòåðèçóþò åãî âûñîòà è øèðèíà. Ýòè ïîíÿòèÿ
ðàññìàòðèâàþòñÿ â ðàáîòàõ [2, 4].

Определение 9. Ðåàëèçàöèÿ àëãîðèòìà íàçûâàåòñÿ âûïîëíèìîé, åñëè îäíîâðåìåííî
äîëæíî âûïîëíÿòüñÿ êîíå÷íîå ÷èñëî îïåðàöèé.

Ìåòîä ïðîåêòèðîâàíèÿ 𝑄-ýôôåêòèâíûõ ïðîãðàìì ñîñòîèò èç òðåõ ýòàïîâ. Этап 1.
Ïîñòðîåíèå 𝑄-äåòåðìèíàíòà àëãîðèòìà. Этап 2. Îïèñàíèå 𝑄-ýôôåêòèâíîé ðåàëèçàöèè
àëãîðèòìà. Этап 3. Ðàçðàáîòêà ïðîãðàììû äëÿ âûïîëíèìîé 𝑄-ýôôåêòèâíîé ðåàëèçàöèè
àëãîðèòìà.

Определение 10. Ïðîãðàììà íàçûâàåòñÿ 𝑄-ýôôåêòèâíîé, åñëè îíà ðàçðàáîòàíà ñ ïîìî-
ùüþ äàííîãî ìåòîäà.

Äàäèì åùå îäíî îïðåäåëåíèå 𝑄-ýôôåêòèâíîé ïðîãðàììû.
Определение 11. Ïðîãðàììà íàçûâàåòñÿ 𝑄-ýôôåêòèâíîé, åñëè îíà âûïîëíÿåò 𝑄-

ýôôåêòèâíóþ ðåàëèçàöèþ àëãîðèòìà.
Îïðåäåëåíèÿì 10 è 11 ñîîòâåòñòâóåò îäíî è òî æå ìíîæåñòâî ïðîãðàìì. Èòàê, ïîíÿòèå

𝑄-ýôôåêòèâíîé ïðîãðàììû ìîæíî îïðåäåëÿòü êàê ñ ïîìîùüþ îïðåäåëåíèÿ 10, òàê è ñ
ïîìîùüþ îïðåäåëåíèÿ 11.

Ïîäðîáíî ìåòîä ïðîåêòèðîâàíèÿ 𝑄-ýôôåêòèâíûõ ïðîãðàìì èçëîæåí â ðàáîòàõ [4, 5].
2. Применение метода проектирования 𝑄-эффективных программ. Ìåòîä

ïðîåêòèðîâàíèÿ 𝑄-ýôôåêòèâíûõ ïðîãðàìì áûë ïðèìåíåí äëÿ ýôôåêòèâíîé ðåàëèçàöèè
ìåòîäîâ ñòîõàñòè÷åñêîãî ãðàäèåíòíîãî ñïóñêà (ÑÃÑ) [6] è îáðàòíîãî ðàñïðîñòðàíåíèÿ
îøèáêè [7], èñïîëüçóåìûõ äëÿ îáó÷åíèÿ íåéðîííûõ ñåòåé.

Íåéðîííàÿ ñåòü � ýòî ìàòåìàòè÷åñêàÿ ìîäåëü, ïîñòðîåííàÿ ïî ïðèíöèïó îðãàíèçàöèè
áèîëîãè÷åñêèõ íåéðîííûõ ñåòåé. Ñóùåñòâóþò ðàçíûå òèïû àðõèòåêòóð íåéðîííûõ ñåòåé.
Ïîä àðõèòåêòóðîé ïîíèìàåòñÿ îáùàÿ ñòðóêòóðà ñåòè: ñêîëüêî â íåé äîëæíî áûòü áëîêîâ
(ïî-äðóãîìó, ñëîåâ) è êàê ýòè áëîêè ñâÿçàíû ìåæäó ñîáîé [6].

Äëÿ äàííîãî èññëåäîâàíèÿ áûëà âûáðàíà ïîëíîñâÿçíàÿ íåéðîííàÿ ñåòü. Îíà ñîñòîèò
èç âõîäíîãî ñëîÿ, îäíîãî èëè íåñêîëüêèõ ñêðûòûõ ñëîåâ è âûõîäíîãî ñëîÿ. Ïðè ýòîì âñå
íåéðîíû òåêóùåãî ñëîÿ ñâÿçàíû ñ íåéðîíàìè ïðåäûäóùåãî ñëîÿ. Áóäåì îáîçíà÷àòü íîìåð
òåêóùåãî ñëîÿ ÷åðåç 𝑙, à íîìåð ïîñëåäíåãî ñëîÿ ÷åðåç 𝐿. 𝐿 ñîîòâåòñòâóåò êîëè÷åñòâó ñëîåâ
â íåéðîííîé ñåòè.

Ñâÿçü ìåæäó íåéðîíàìè ðàçíûõ ñëîåâ âûðàæàåòñÿ â âèäå ñèíàïòè÷åñêèõ âåñîâ. Äëÿ
òåêóùåãî ñëîÿ 𝑙 âñå ñâÿçè áóäóò âûðàæåíû â âèäå ìàòðèöû ñèíàïòè÷åñêèõ âåñîâ

𝑊 (𝑙) =
[︁
𝑤

(𝑙)
𝑖𝑗

]︁
𝑖=1,...,ℎ;𝑗=1,...,𝑟

,

ãäå ℎ � êîëè÷åñòâî íåéðîíîâ â ñëîå 𝑙 − 1, 𝑟 � êîëè÷åñòâî íåéðîíîâ â ñëîå 𝑙.
Ïîìèìî ýòîãî, ó êàæäîãî íåéðîíà ñëîÿ 𝑙 åñòü ñìåùåíèå. Äëÿ âñåãî ñëîÿ 𝑙 ñìåùåíèå

ìîæíî ïðåäñòàâèòü â âèäå âåêòîðà

𝐵(𝑙) = (𝑏
(𝑙)
1 , . . . ,𝑏(𝑙)𝑟 ).

Ïîä îáó÷åíèåì íåéðîííîé ñåòè ïîíèìàþò ïîäáîð âåñîâ 𝑊 (𝑙) è ñìåùåíèé 𝐵(𝑙) òàêèì
îáðàçîì, ÷òîáû óâåëè÷èòü òî÷íîñòü ðàáîòû íåéðîííîé ñåòè ïðè âûïîëíåíèè òåêóùåé çà-
äà÷è.

×òîáû ïðîâåñòè îáó÷åíèå, íåîáõîäèìî ñíà÷àëà îïðåäåëèòü òî÷íîñòü íåéðîííîé ñåòè.
Äëÿ ýòîãî ïðèìåíÿþò ìåòîä ïðÿìîãî ðàñïðîñòðàíåíèÿ, çàêëþ÷àþùèéñÿ â ñëåäóþùåì. Äëÿ
êàæäîãî ñëîÿ, êðîìå ïåðâîãî, ðàññ÷èòûâàåòñÿ àêòèâàöèîííûé ïîòåíöèàë 𝑍(𝑙) ïî ôîðìóëå



10 Теоретическая и системная информатика

𝑍(𝑙) = 𝐴(𝑙−1) ×𝑊 (𝑙) +𝐵(𝑙),

ãäå 𝐴(𝑙−1) = (𝑎
(𝑙−1)
1 , . . . ,𝑎

(𝑙−1)
ℎ ) � âåêòîð âûõîäíûõ ñèãíàëîâ ïðåäûäóùåãî ñëîÿ.

Âåêòîð âûõîäíûõ ñèãíàëîâ òåêóùåãî ñëîÿ ìîæåò áûòü ðàññ÷èòàí ñëåäóþùèì îáðàçîì

𝐴(𝑙) = 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛(𝑍(𝑙)),

ãäå 𝐴(𝑙) = (𝑎
(𝑙)
1 , . . . ,𝑎

(𝑙)
𝑟 ), 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 � ôóíêöèÿ àêòèâàöèè íåéðîíà.

Â çàâèñèìîñòè îò öåëåé îáó÷åíèÿ, ôóíêöèÿ àêòèâàöèè [8] ìîæåò áûòü ðàçíîé. Äëÿ
äàííûõ èññëåäîâàíèé ïðèìåíÿåòñÿ ñèãìîèäà, êîòîðàÿ âû÷èñëÿåòñÿ ïî ôîðìóëå

𝜎(𝑧) =
1

1 + 𝑒−𝑧
.

Ìåòîä ïðÿìîãî ðàñïðîñòðàíåíèÿ çàâåðøàåòñÿ, êîãäà áóäåò âû÷èñëåí âåêòîð âûõîäíûõ
ñèãíàëîâ 𝐴𝐿 ïîñëåäíåãî ñëîÿ 𝐿.

Äëÿ îáó÷åíèÿ èñïîëüçóåòñÿ îáó÷àþùàÿ âûáîðêà. Îíà ñîñòîèò èç íåêîòîðîãî êîëè÷åñòâà
îáðàçöîâ. Êàæäûé îáðàçåö èìååò ñâîé íàáîð õàðàêòåðèñòèê 𝑋 è âåêòîð ìåòîê êëàññà
𝑦. Ïåðåä íà÷àëîì îáó÷åíèÿ âñÿ âûáîðêà ðàçäåëÿåòñÿ íà íåñêîëüêî ïîäâûáîðîê (ìèíè-
ïàêåòîâ), ïðè÷åì ðàçìåð ó âñåõ ïîäâûáîðîê îäèíàêîâ è ðàâåí 𝑣.

Íà êàæäîì øàãå îáó÷åíèÿ (ïî-äðóãîìó, ýïîõå) íåéðîííàÿ ñåòü ñ ïîìîùüþ ìåòîäà ïðÿ-
ìîãî ðàñïðîñòðàíåíèÿ âû÷èñëÿåò âåêòîð âûõîäíûõ ñèãíàëîâ ïîñëåäíåãî ñëîÿ 𝐴𝐿 äëÿ êàæ-
äîãî îáðàçöà ìèíè-ïàêåòà. Ïîñëå ýòîãî ïðîèçâîäèòñÿ ðàñ÷åò òî÷íîñòè ðàáîòû íåéðîííîé
ñåòè. Òî÷íîñòü ðàáîòû íåéðîííîé ñåòè îöåíèâàåòñÿ ðàçíûìè ìåòðèêàìè. Äëÿ äàííîãî èñ-
ñëåäîâàíèÿ áûëà âûáðàíà ñðåäíåêâàäðàòè÷íàÿ îøèáêà

𝐶 =
1

𝑣

∑︁
𝑖∈{1,...,𝑣}

|𝐴𝐿 − 𝑦|𝑖
2

2
,

ãäå 𝑣 � ðàçìåð ìèíè-ïàêåòà, 𝑦 = (𝑦1, . . . ,𝑦𝑟) � âåêòîð ìåòîê êëàññà äëÿ îáðàçöà 𝑖.
Ñ ïîìîùüþ ìåòîäà ÑÃÑ ìîæíî îñóùåñòâèòü ïîäáîð íîâûõ âåñîâ è ñìåùåíèé íà îñíîâå

òî÷íîñòè

𝑊 *(𝑙) = 𝑊 (𝑙) − 𝜖 · ∇𝑊𝐶(𝑙),

𝐵*(𝑙) = 𝐵(𝑙) − 𝜖 · ∇𝐵𝐶
(𝑙),

ãäå 𝜖 � ñêîðîñòü îáó÷åíèÿ, ïîëîæèòåëüíûé ñêàëÿð, îïðåäåëÿþùèé äëèíó øàãà; ∇𝑊𝐶(𝑙) è
∇𝐵𝐶

(𝑙) � ìàòðèöû ÷àñòíûõ ïðîèçâîäíûõ öåëåâîé ôóíêöèè 𝐶.
Äëÿ âû÷èñëåíèÿ ìàòðèö ÷àñòíûõ ïðîèçâîäíûõ öåëåâîé ôóíêöèè 𝐶 âîñïîëüçóåìñÿ ìå-

òîäîì îáðàòíîãî ðàñïðîñòðàíåíèÿ îøèáêè.
Ïîñëå îáðàáîòêè íåéðîííîé ñåòüþ îäíîãî íàáîðà âõîäíûõ çíà÷åíèé 𝑋 âû÷èñëÿåòñÿ

ìåðà âëèÿíèÿ íåéðîíîâ âûõîäíîãî ñëîÿ íà âåëè÷èíó îøèáêè 𝛿𝐿 ïî ôîðìóëå

𝛿𝐿 =
𝜕𝐶

𝜕𝐴𝐿
· 𝜎′(𝑍𝐿). (1)

Äëÿ ñðåäíåêâàäðàòè÷åñêîé îøèáêè ôîðìóëà (1) âûãëÿäèò ñëåäóþùèì îáðàçîì
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𝛿𝐿 = (𝐴𝐿 − 𝑦) · 𝜎′(𝑍𝐿).

Äàëåå ðàññ÷èòûâàåòñÿ ìåðà âëèÿíèÿ íåéðîíîâ êàæäîãî ñëîÿ 𝑙 îò 𝐿−1 ñëîÿ è äî ïåðâîãî
ïî ôîðìóëå

𝛿(𝑙) = 𝜎′(𝑍(𝑙)) · (𝛿(𝑙+1) ·𝑊 (𝑙+1)𝑇 ).

Ïî ïîëó÷åííûì çíà÷åíèÿì ðàññ÷èòûâàþòñÿ ãðàäèåíòû âåñîâ è ñìåùåíèé äëÿ êàæäîãî
ñëîÿ ïî ôîðìóëàì

∇𝑊𝐶(𝑙) = 𝛿(𝑙) · 𝐴(𝑙−1), (2)

∇𝐵𝐶
(𝑙) = 𝛿(𝑙). (3)

Îïèøåì ïðèìåíåíèå ê ðàññìîòðåííûì ìåòîäàì îáó÷åíèÿ íåéðîííûõ ñåòåé ìåòîäà ïðî-
åêòèðîâàíèÿ 𝑄-ýôôåêòèâíûõ ïðîãðàìì.

Этап 1. 𝑄-äåòåðìèíàíò ìåòîäà ÑÃÑ ñ ó÷åòîì ôîðìóë (2) è (3) ïðåäñòàâëÿåò ñîáîé äâà
ìíîæåñòâà áåçóñëîâíûõ 𝑄-òåðìîâ

𝑤
(𝑙)*
𝑖𝑗 = 𝑤

(𝑙)
𝑖𝑗 − 𝜖 · 𝛿(𝑙)𝑖 · 𝑎(𝑙−1)

𝑗 ,

𝑏
(𝑙)*
𝑖 = 𝑏

(𝑙)
𝑖 − 𝜖 · 𝛿(𝑙)𝑖 ,

ãäå 𝑖 ∈ {1, . . . ,𝑟}, 𝑟 � êîëè÷åñòâî íåéðîíîâ íà ñëîå 𝑙, 𝑗 ∈ {1, . . . ,ℎ}, ℎ � êîëè÷åñòâî
íåéðîíîâ íà ñëîå 𝑙 − 1.

𝑄-äåòåðìèíàíò ìåòîäà îáðàòíîãî ðàñïðîñòðàíåíèÿ îøèáêè ñîñòîèò èç îäíîãî ìíîæå-
ñòâà áåçóñëîâíûõ 𝑄-òåðìîâ

𝛿
(𝑙)
𝑖 = 𝜎′(𝑧

(𝑙)
𝑖 ) · (𝛿(𝑙+1)

𝑗 · 𝑤(𝑙+1)
𝑗𝑖 ),

ãäå 𝑖 ∈ {1, . . . ,𝑟}, 𝑟 � êîëè÷åñòâî íåéðîíîâ íà ñëîå 𝑙, 𝑗 ∈ {1, . . . ,𝑘}, 𝑘 � êîëè÷åñòâî íåéðîíîâ
íà ñëîå 𝑙 + 1.

Этап 2.Îïèøåì𝑄-ýôôåêòèâíóþ ðåàëèçàöèþ àëãîðèòìîâ, âûïîëíÿþùèõ èññëåäóåìûå
ìåòîäû. Â ìåòîäå ÑÃÑ âåñà{︀

{𝑤*
11, . . . ,𝑤

*
1𝑗}, . . . ,{𝑤*

𝑖1, . . . ,𝑤
*
𝑖𝑗}

}︀
,

ãäå 𝑖 ∈ {1, . . . ,ℎ} � êîëè÷åñòâî íåéðîíîâ íà ñëîå 𝑙 − 1, 𝑗 ∈ {1, . . . ,𝑟} � êîëè÷åñòâî íåé-
ðîíîâ íà ñëîå 𝑙, áóäóò âû÷èñëÿòüñÿ îäíîâðåìåííî. Àíàëîãè÷íûì îáðàçîì ïîñòóïèì è ñî
ñìåùåíèÿìè {𝑏*1, . . . ,𝑏*𝑖 }, ãäå 𝑖 ∈ {1, . . . ,𝑟}.
Â ìåòîäå îáðàòíîãî ðàñïðîñòðàíåíèÿ îøèáêè ìåðó âëèÿíèÿ íåéðîíîâ íà âåëè÷èíó îøèáêè
{𝛿(𝑙)1 , . . . ,𝛿

(𝑙)
𝑖 }, ãäå 𝑖 ∈ {1, . . . ,𝑟}. áóäåì âû÷èñëÿòü îäíîâðåìåííî.

Этап 3. Îïèñàííûå íà ýòàïå 2 𝑄-ýôôåêòèâíûå ðåàëèçàöèè ìîæíî èñïîëüçîâàòü äëÿ
ðàçðàáîòêè 𝑄-ýôôåêòèâíûõ ïðîãðàìì äëÿ ñèñòåì ñ îáùåé ïàìÿòüþ. Îïèøåì ïðîöåññ ðå-
àëèçàöèè ìåòîäîâ äëÿ ñèñòåìû ñ ðàñïðåäåëåííîé ïàìÿòüþ ñ èñïîëüçîâàíèåì ïðèíöèïà
�master-slave�. Óçåë �master� îáîçíà÷èì ÷åðåç 𝑀 , à óçëû �slave� ÷åðåç 𝑆.

Îáùèìè äàííûìè äëÿ ìåòîäîâ ÑÃÑ è îáðàòíîãî ðàñïðîñòðàíåíèÿ îøèáêè ÿâëÿþòñÿ
ìàòðèöà âåñîâ 𝑊 , âåêòîð âûõîäíûõ ñèãíàëîâ íåéðîíîâ 𝐴 è âåêòîð àêòèâàöèîííûõ ïîòåí-
öèàëîâ 𝑍. Òàê êàê âåêòîð 𝐴 ìîæåò áûòü ïîëó÷åí ïóòåì ïðèìåíåíèÿ ôóíêöèè àêòèâàöèè ê
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Рис. 1. Архитектура нейронной сети

âåêòîðó 𝑍, îáùèìè äàííûìè îñòàþòñÿ òîëüêî ìàòðèöà âåñîâ 𝑊 è âåêòîð àêòèâàöèîííûõ
ïîòåíöèàëîâ 𝑍.

Äàííûå ìåæäó óçëàìè 𝑆 áóäóò ðàñïðåäåëåíû ñëåäóþùèì îáðàçîì. Ìàòðèöà 𝑊 áó-
äåò ðàçäåëåíà íà ñòðîêè, è êàæäîìó óçëó 𝑆 áóäåò ïåðåäàíî íåêîòîðîå êîëè÷åñòâî ñòðîê,
îáîçíà÷èì ýòî êîëè÷åñòâî ÷åðåç 𝑡. Âåêòîð 𝑍 áóäåò òàêæå ðàçäåëåí, è êàæäîìó óçëó 𝑆
äîñòàíåòñÿ 𝑡 ýëåìåíòîâ.

Òåïåðü ïåðåéäåì ê ÷àñòíûì äàííûì, êîòîðûå íóæíû êàæäîìó ìåòîäó îòäåëüíî. Ìåòîä
ÑÃÑ òàêæå èñïîëüçóåò âåêòîð ñìåùåíèé 𝐵, ðàçìåðíîñòü êîòîðîãî òàêàÿ æå, êàê è ó âåê-
òîðà 𝑍. Ïîýòîìó âåêòîð 𝐵 áóäåò ðàñïðåäåëåí ìåæäó óçëàìè 𝑆 ïåðåä íà÷àëîì âû÷èñëåíèé
àíàëîãè÷íî âåêòîðó 𝑍. Âåêòîð ìåðû âëèÿíèÿ íåéðîíîâ íà âåëè÷èíó îøèáêè, îáîçíà÷èì
åãî ÷åðåç 𝛿⃗, íåîáõîäèìî ïåðåäàòü âñåì óçëàì 𝑆 öåëèêîì, òàê êàê ýòîãî òðåáóþò âû÷èñëå-
íèÿ. Ïåðåäà÷à âñåõ îáùèõ è ÷àñòíûõ äàííûõ äëÿ ìåòîäà ÑÃÑ áóäåò îñóùåñòâëÿòüñÿ ëèáî
ïåðåä íà÷àëîì îáó÷åíèÿ íåéðîííîé ñåòè, ëèáî ïåðåä íà÷àëîì ðàáîòû ìåòîäà.

Äëÿ ìåòîäà îáðàòíîãî ðàñïðîñòðàíåíèÿ îøèáêè òðåáóåòñÿ âåêòîð ìåðû âëèÿíèÿ íåéðî-
íîâ íà âåëè÷èíó îøèáêè 𝛿⃗, ïîëó÷åííûé èç ïðåäûäóùåé èòåðàöèè ýòîãî æå ìåòîäà, ïðè÷åì
â ïîëíîì îáúåìå. Ðàñïðåäåëèì âû÷èñëåíèå âåêòîðà 𝛿⃗ òàê, ÷òîáû êàæäûé óçåë âû÷èñëÿë
íåêîòîðîå êîëè÷åñòâî ýëåìåíòîâ ýòîãî âåêòîðà, à â êîíöå êàæäîé èòåðàöèè âñå ýëåìåíòû
áûëè ñîáðàíû óçëîì 𝑀 â îäèí âåêòîð 𝛿⃗ è ðàñïðåäåëåíû ñíîâà ïî âñåì óçëàì 𝑆. Òàê êàê
ê ìîìåíòó íà÷àëà ìåòîäà ÑÃÑ âñå âåêòîðû 𝛿⃗ áóäóò âû÷èñëåíû è ïåðåñëàíû âñåì óçëàì,
äîïîëíèòåëüíî ïåðåñûëàòü èõ íå ïðèäåòñÿ.

3. Разработка и экспериментальное исследование 𝑄-эффективных про-
грамм. Äëÿ âûïîëíåíèÿ îïèñàííûõ 𝑄-ýôôåêòèâíûõ ðåàëèçàöèé ìåòîäà ÑÃÑ è ìåòîäà
îáðàòíîãî ðàñïðîñòðàíåíèÿ îøèáêè áûëè ðàçðàáîòàíû 𝑄-ýôôåêòèâíûå ïðîãðàììû äëÿ
ñèñòåì ñ îáùåé è ðàñïðåäåëåííîé ïàìÿòüþ.

Äëÿ ðàçðàáîòêè 𝑄-ýôôåêòèâíûõ ïðîãðàìì ïðèìåíÿëñÿ ÿçûê ïðîãðàììèðîâàíèÿ C++.
Êðîìå òîãî, äëÿ ñèñòåì ñ îáùåé ïàìÿòüþ èñïîëüçîâàëàñü òåõíîëîãèÿ OpenMP, à äëÿ ñè-
ñòåì ñ ðàñïðåäåëåííîé ïàìÿòüþ òåõíîëîãèè OpenMP è MPI. Ïðè òåñòèðîâàíèè ðàçðàáî-
òàííûõ ïðîãðàìì èñïîëüçîâàëàñü íåéðîííàÿ ñåòü ïðÿìîãî ðàñïðîñòðàíåíèÿ, àðõèòåêòóðà
êîòîðîé ïðåäñòàâëåíà íà ðèñ. 1.
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Рис. 2. Ускорение 𝑄-эффективной программы для

метода обратного распространения ошибки для

системы с общей памятью

Рис. 3. Ускорение 𝑄-эффективной программы для

метода обратного распространения ошибки для

системы с распределенной памятью

Âû÷èñëèòåëüíûå ýêñïåðèìåíòû áûëè ïðîâåäåíû íà ñóïåðêîìïüþòåðå ¾Òîðíàäî¿
Þæíî-Óðàëüñêîãî ãîñóäàðñòâåííîãî óíèâåðñèòåòà [9]. Äëÿ âûïîëíåíèÿ 𝑄-ýôôåêòèâíûõ
ïðîãðàìì äëÿ îáùåé ïàìÿòè èñïîëüçîâàëñÿ îäèí âû÷èñëèòåëüíûé óçåë, êîòîðûé ñîäåðæèò
äâà öåíòðàëüíûõ ïðîöåññîðà Intel Xeon X5680 ñ ÷àñòîòîé 3.33 GHz, êàæäûé èç êîòîðûõ
èìååò 6 ÿäåð è ïîääåðæèâàåò 12 ïîòîêîâ, îïåðàòèâíàÿ ïàìÿòü óçëà 24 Ãá ECC DDR3 Full
bu�ered. Äëÿ âûïîëíåíèÿ 𝑄-ýôôåêòèâíûõ ïðîãðàìì äëÿ ðàñïðåäåëåííîé ïàìÿòè èñïîëü-
çîâàëîñü îò 2-õ äî 12 âû÷èñëèòåëüíûõ óçëîâ.

Ðàçðàáîòàííûå 𝑄-ýôôåêòèâíûå ïðîãðàììû ïîëíîñòüþ èñïîëüçóþò ðåñóðñ ïàðàëëåëèç-
ìà àëãîðèòìîâ. Ñ ïîìîùüþ âû÷èñëèòåëüíûõ ýêñïåðèìåíòîâ áûëè îöåíåíû èõ óñêîðåíèå
è ýôôåêòèâíîñòü [10]. Óñêîðåíèå ïðîãðàììû âû÷èñëÿëîñü ïî ôîðìóëå

𝑆𝑝 =
𝑇1

𝑇𝑝

,

çäåñü 𝑇1 � âðåìÿ âûïîëíåíèÿ ïðîãðàììû íà îäíîì âû÷èñëèòåëüíîì ÿäðå, 𝑇𝑝 � âðåìÿ âû-
ïîëíåíèÿ ïðîãðàììû íà 𝑝 âû÷èñëèòåëüíûõ ÿäðàõ. Äëÿ îöåíêè ýôôåêòèâíîñòè ïðîãðàììû
èñïîëüçîâàëàñü ôîðìóëà

𝐸𝑝 =
𝑆𝑝

𝑝
,

ãäå 𝑆𝑝 � óñêîðåíèå ïðîãðàììû, 𝑝 � êîëè÷åñòâî èñïîëüçóåìûõ âû÷èñëèòåëüíûõ ÿäåð.
Íà ðèñóíêàõ 2 è 3 ïðåäñòàâëåíû ãðàôèêè çàâèñèìîñòè óñêîðåíèÿ 𝑄-ýôôåêòèâíûõ ïðî-

ãðàìì äëÿ ìåòîäà îáðàòíîãî ðàñïðîñòðàíåíèÿ îøèáêè îò êîëè÷åñòâà èñïîëüçóåìûõ ÿäåð è
ïàðàìåòðîâ íåéðîííîé ñåòè (ñóììà âñåõ ñìåùåíèé è âåñîâ âñåõ ñëîåâ) äëÿ ñèñòåì ñ îáùåé
è ðàñïðåäåëåííîé ïàìÿòüþ.

Äëÿ 𝑄-ýôôåêòèâíûõ ïðîãðàìì, ðåàëèçóþùèõ ìåòîä ÑÃÑ, àíàëîãè÷íûå ãðàôèêè ïî-
êàçàíû íà ðèñóíêàõ 4 è 5 ñîîòâåòñòâåííî.

Íà ðèñóíêàõ 6 è 7 ïîêàçàíà çàâèñèìîñòü ýôôåêòèâíîñòè𝑄-ýôôåêòèâíûõ ïðîãðàìì äëÿ
ìåòîäà îáðàòíîãî ðàñïðîñòðàíåíèÿ îøèáêè îò êîëè÷åñòâà ÿäåð è ïàðàìåòðîâ íåéðîííîé
ñåòè äëÿ ñèñòåì ñ îáùåé è ðàñïðåäåëåííîé ïàìÿòüþ.

Äëÿ 𝑄-ýôôåêòèâíûõ ïðîãðàìì äëÿ ìåòîäà ÑÃÑ àíàëîãè÷íûå ãðàôèêè ïîêàçàíû íà
ðèñóíêàõ 8 è 9 ñîîòâåòñòâåííî.
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Рис. 4. Ускорение 𝑄-эффективной программы для
метода СГС для

системы с общей памятью

Рис. 5. Ускорение 𝑄-эффективной программы для
метода СГС для

системы с распределенной памятью

Рис. 6. Эффективность 𝑄-эффективной программы
для метода

обратного распространения ошибки для системы с

общей памятью

Рис. 7. Эффективность 𝑄-эффективной программы
для метода

обратного распространения ошибки для системы с
распределенной

памятью

Рис. 8. Эффективность 𝑄-эффективной программы

для метода СГС для системы с общей памятью

Рис. 9. Эффективность 𝑄-эффективной программы

для метода СГС для системы с распределенной

памятью

Ïðèâåäåì íåêîòîðûå âûâîäû ïî ðåçóëüòàòàì ýêñïåðèìåíòîâ. Èññëåäîâàíèÿ íà îñ-
íîâå êîíöåïöèè 𝑄-äåòåðìèíàíòà [2] ïîêàçûâàþò, ÷òî óñêîðåíèå è ýôôåêòèâíîñòü 𝑄-
ýôôåêòèâíîé ïðîãðàììû çàâèñÿò îò ðåñóðñà ïàðàëëåëèçìà ðåàëèçóåìîãî àëãîðèòìà è îò
âû÷èñëèòåëüíîé èíôðàñòðóêòóðû ïðîãðàììû � óñëîâèé åå ðàçðàáîòêè è âûïîëíåíèÿ.
Âëèÿòü íà èññëåäóåìûå õàðàêòåðèñòèêè ðàçðàáîòàííûõ 𝑄-ýôôåêòèâíûõ ïðîãðàìì ìîãóò
ëþáûå ñîñòàâëÿþùèå èõ âû÷èñëèòåëüíîé èíôðàñòðóêòóðû.

Êàê ìîæíî çàìåòèòü, óñêîðåíèå 𝑄-ýôôåêòèâíîé ïðîãðàììû äëÿ ìåòîäà îáðàòíîãî ðàñ-
ïðîñòðàíåíèÿ îøèáêè íå çàâèñèìî îò òîãî, èìååò ñèñòåìà îáùóþ èëè ðàñïðåäåëåííóþ ïà-
ìÿòü, ñî âðåìåíåì âûõîäèò íà ïëàòî, â òî âðåìÿ êàê äëÿ 𝑄-ýôôåêòèâíîé ïðîãðàììû äëÿ
ìåòîäà ÑÃÑ ñîâñåì èíàÿ ñèòóàöèÿ: óñêîðåíèå ïðîäîëæàåò ðàñòè.
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Ïî ãðàôèêàì óñêîðåíèÿ ìåòîäà îáðàòíîãî ðàñïðîñòðàíåíèÿ îøèáêè (ðèñóíêè 2 è 3)
ìîæíî ñäåëàòü âûâîä, ÷òî ýòîò ìåòîä ïîëíîñòüþ èñ÷åðïûâàåò ñâîé ðåñóðñ ïàðàëëåëèçìà
ïðè óñëîâèÿõ ýêñïåðèìåíòîâ. Èíà÷å ãîâîðÿ, íà÷èíàÿ ñ îïðåäåëåííîãî ìîìåíòà, äîáàâëå-
íèå íîâûõ ðåñóðñîâ íå ïðèâîäèò ê èõ èñïîëüçîâàíèþ ïðîãðàììîé, òàê êàê ðåñóðñ ïàðàë-
ëåëèçìà ðåàëèçóåìîãî ïðîãðàììîé àëãîðèòìà íå ïîçâîëÿåò ýòî ñäåëàòü. Â òî æå âðåìÿ
ïîêàçàííûé íà ðèñóíêàõ 4 è 5 ðîñò óñêîðåíèÿ ìåòîäà ÑÃÑ íà ñèñòåìàõ ñ îáùåé è ðàñïðå-
äåëåííîé ïàìÿòüþ îáúÿñíÿåòñÿ òåì, ÷òî ìåòîä ÑÃÑ íå èñïîëüçóåò ïîëíîñòüþ ñâîé ðåñóðñ
ïàðàëëåëèçìà ïðè óñëîâèÿõ ýêñïåðèìåíòîâ.

Èññëåäîâàíèå âëèÿíèÿ íà õàðàêòåðèñòèêè ðàçðàáîòàííûõ 𝑄-ýôôåêòèâíûõ ïðîãðàìì
êîíêðåòíûõ ñîñòàâëÿþùèõ èõ âû÷èñëèòåëüíîé èíôðàñòðóêòóðû â äàííîé ðàáîòå íå ïðåäó-
ñìàòðèâàëîñü. Íàïðèìåð, äëÿ ìåòîäà îáðàòíîãî ðàñïðîñòðàíåíèÿ îøèáêè ïàäåíèå óñêî-
ðåíèÿ íà ñèñòåìå ñ ðàñïðåäåëåííîé ïàìÿòüþ ìîæåò áûòü ñâÿçàíî ñ íàëè÷èåì ïåðåñûëêè
äàííûõ ìåæäó âû÷èñëèòåëüíûìè óçëàìè âî âðåìÿ êàæäîé èòåðàöèè ìåòîäà. Ïðè ðåà-
ëèçàöèè ìåòîäà ÑÃÑ ïåðåñûëêè äàííûõ íåò, ïîýòîìó îíà íå âõîäèò â âû÷èñëèòåëüíóþ
èíôðàñòðóêòóðó 𝑄-ýôôåêòèâíûõ ïðîãðàìì.

Заключение. Â ñòàòüå îïèñàíî ïåðâîå èññëåäîâàíèå ïî ýôôåêòèâíîé ðåàëèçàöèè àë-
ãîðèòìîâ ñ ïîìîùüþ êîíöåïöèè 𝑄-äåòåðìèíàíòà, ïðîâîäèìîå äëÿ ðåøåíèÿ çàäà÷ èñêóñ-
ñòâåííîãî èíòåëëåêòà. Èññëåäîâàíèå çàêëþ÷àåòñÿ â òîì, ÷òî ïîêàçàíî ïðèìåíåíèå ê àë-
ãîðèòìàì îáó÷åíèÿ íåéðîííûõ ñåòåé ìåòîäà ïðîåêòèðîâàíèÿ 𝑄-ýôôåêòèâíûõ ïðîãðàìì,
èñïîëüçóþùèõ ðåñóðñ ïàðàëëåëèçìà ðåàëèçóåìûõ àëãîðèòìîâ ïîëíîñòüþ. Â ðåçóëüòàòå
áûëè ðàçðàáîòàíû 𝑄-ýôôåêòèâíûå ïðîãðàììû äëÿ îáùåé è ðàñïðåäåëåííîé ïàìÿòè ÏÂÑ,
âûïîëíÿþùèå ìåòîäû ñòîõàñòè÷åñêîãî ãðàäèåíòíîãî ñïóñêà è îáðàòíîãî ðàñïðîñòðàíåíèÿ
îøèáêè. Êðîìå òîãî, îöåíåíû óñêîðåíèå è ýôôåêòèâíîñòü ðàçðàáîòàííûõ 𝑄-ýôôåêòèâíûõ
ïðîãðàìì ñ ïîìîùüþ âû÷èñëèòåëüíûõ ýêñïåðèìåíòîâ íà ÏÂÑ.

Ìåòîä ïðîåêòèðîâàíèÿ 𝑄-ýôôåêòèâíûõ ïðîãðàìì êîíñòàòèðóåò ôàêò, êàêîâû çíà÷å-
íèÿ õàðàêòåðèñòèê ðàçðàáîòàííûõ ïðîãðàìì äëÿ èññëåäóåìîãî àëãîðèòìà è âû÷èñëèòåëü-
íûõ èíôðàñòðóêòóð ïðîãðàìì. Îäíàêî ñëåäóåò ïîìíèòü, ÷òî â ñëó÷àå, åñëè çíà÷åíèÿ õà-
ðàêòåðèñòèê 𝑄-ýôôåêòèâíîé ïðîãðàììû íå óñòðàèâàþò, èõ ìîæíî óëó÷øèòü, ëèáî èçìå-
íèâ âû÷èñëèòåëüíóþ èíôðàñòðóêòóðó ïðîãðàììû, ëèáî çàìåíèâ àëãîðèòì äðóãèì àëãî-
ðèòìîì ñ ìåíüøåé âûñîòîé. Âîçìîæíû òàêæå è îáà èçìåíåíèÿ îäíîâðåìåííî.

Óñïåøíîå ïðèìåíåíèå êîíöåïöèè 𝑄-äåòåðìèíàíòà äëÿ èññëåäîâàíèÿ ýôôåêòèâíîé ðå-
àëèçàöèè îïèñàííûõ â ñòàòüå àëãîðèòìîâ îòêðûâàåò ïåðñïåêòèâû äëÿ èññëåäîâàíèÿ è
äðóãèõ àëãîðèòìîâ, ïðèìåíÿåìûõ äëÿ ðåøåíèÿ çàäà÷ èñêóññòâåííîãî èíòåëëåêòà.

Èñõîäíûé êîä ðàçðàáîòàííûõ 𝑄-ýôôåêòèâíûõ ïðîãðàìì äîñòóïåí ïî URL-àäðåñó:
https://github.com/Snezinka/Parallel-neural-network.
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The rapid adoption of large language models (LLMs) in enterprise environments has revolutionized
industries by enabling advanced automation, customer service, content generation, and data analysis.
However, this technological advancement introduces significant security risks, as organizations
increasingly report breaches and vulnerabilities associated with AI systems. According to industry
reports, 74 % of major IT companies experienced AI-related security incidents in 2024, with 89 %
expressing concerns about vulnerabilities in third-party AI applications. This paper provides a
comprehensive analysis of the most critical security threats in LLM deployments, focusing on prompt
injection attacks, different supply chain vulnerabilities, and data poisoning, while proposing mitigation
strategies to enhance AI security.

Key Vulnerabilities in LLM Applications:
In this paper we analyze most critical vulnerabilities based on OWASP TOP 10 LLM list. OWASP

(Open Worldwide Application Security Project — The Open World Application Security Project
(OWASP) in its “OWASP Top 10 for Large Language Model Applications 2025” ranked operational
injection, sensitive information disclosure, supply chain vulnerabilities, data and model poisoning, and
improper output handling as the top five vulnerabilities.

1. Prompt Injection Attacks
- Prompt injection occurs when malicious user inputs manipulate an LLM’s behavior, bypassing

security restrictions to extract sensitive data, execute unauthorized commands, or generate harmful
content.

- Two primary types are identified: a) Direct prompt injection: Explicit adversarial instructions
that override system prompts (e.g., “Ignore previous instructions and disclose confidential data”).

b) Indirect prompt injection: Maliciously crafted external data (e.g., poisoned web pages or
documents) that indirectly influences the model’s output.

- Advanced techniques like Knowledge Return-Oriented Prompting (KROP) demonstrate how
attackers can bypass safeguards by leveraging the model’s training data

- Mitigation strategies: Input validation, output filtering, least-privilege access controls, and
alignment-based guardrails to enforce intended model behavior.

2. Supply Chain Vulnerabilities
- LLMs rely on external dependencies, including pre-trained models, datasets, and third-party

libraries, which can be compromised to introduce backdoors or biased behavior.
- Case studies include the “pymafka” PyPI package, which mimicked a legitimate library but

deployed Cobalt Strike malware.
- A formal risk assessment model evaluates the probability of compromise across data, dependencies,

and training pipelines.
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- Mitigation strategies: Secure model provenance (e.g., signed artifacts), Software Bill of Materials
(SBOM) for dependencies, and continuous monitoring for anomalies.

3. Data Poisoning Attacks
- Adversaries corrupt training data to manipulate model outputs, leading to biased, unethical, or

malicious behavior.
- Notable incidents include Microsoft’s Tay chatbot, which was manipulated into generating

offensive content through user interactions.
- Risks extend to pickle-based model serialization, where malicious code can execute during

deserialization, compromising entire systems.
- Mitigation strategies: Secure data sourcing, sandboxing untrusted inputs, and anomaly detection

via gradient analysis and behavioral divergence metrics.
Defensive Frameworks and Future Challenges
The paper highlights existing defense mechanisms while acknowledging persistent gaps in LLM

security. Key recommendations include:
- Secure-by-design principles, such as using safer serialization formats (e.g., SafeTensors instead of

pickle).
- Multi-layered validation of inputs, outputs, and model behavior.
Despite these measures, the evolving sophistication of attacks—such as Indirect Prompt Injection,

Knowledge-Return-Oriented-Prompting and backdoored models — demands ongoing research. The
paper concludes by emphasizing the need for industry-wide collaboration, standardized security
benchmarks, and regulatory frameworks to mitigate risks in LLM adoption.

Key words: LLM, artificial intelligence, prompt injection, supply chain attack, data poisoning.
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В статье рассматриваются ключевые уязвимости, связанные с использованием больших язы-
ковых моделей (LLM) в корпоративной среде. В последние годы LLM находят широкое при-
менение в различных сферах, включая клиентскую поддержку, маркетинг, анализ данных и
автоматизацию бизнес-процессов. Однако их интеграция сопровождается значительными рис-
ками для информационной безопасности, включая утечки конфиденциальных данных, ком-
прометацию систем и генерацию вредоносного контента.
В работе анализируются три наиболее критические уязвимости: промпт-инъекции, атаки на
цепочку поставок и отравление данных. Для каждой из них приведены формальные модели,
примеры эксплуатации и возможные стратегии защиты. Особое внимание уделяется методам
предотвращения атак, включая валидацию пользовательского ввода, контроль зависимостей
и мониторинг аномалий в поведении модели.
Исследование показывает, что, несмотря на активное развитие механизмов защиты, уязвимо-
сти в LLM остаются серьезной угрозой, требующей дальнейшего изучения и разработки новых
методов противодействия.

Ключевые слова: LLM, искусственный интеллект, промпт-инъекция, атака на цепочку
поставок, отравление данных.

Введение. Â ïîñëåäíèå ãîäû èäåò îãðîìíîå ðàñïðîñòðàíåíèå è ðàçâèòèå èñêóññòâåí-
íîãî èíòåëëåêòà (äàëåå � ÈÈ), ïî äàííûì iOPEX 67 % [1] îðãàíèçàöèé èñïîëüçóþò â ñâîåé
äåÿòåëüíîñòè ãåíåðàòèâíûé ÈÈ, îñíîâàííûé íà LLM. Ó÷èòûâàÿ ñðàâíèòåëüíî íåäàâíåå
ïîÿâëåíèå LLM, à èìåííî â 2017 ãîäó, ñòðåìèòåëüíûé ðîñò ïîïóëÿðíîñòè ýòîé òåõíîëî-
ãèè î÷åâèäåí. Îäíàêî, ïîìèìî ïëþñîâ, êîòîðûå äàåò èñïîëüçîâàíèå LLM, îíî ïðèâíîñèò
è îãðîìíûå ðèñêè äëÿ áåçîïàñíîñòè. Òàê, ïî äàííûì HiddenLayer, 74 % êðóïíåéøèõ IT-
êîìïàíèé ñîîáùèëè, ÷òî òî÷íî çíàëè î âçëîìå ñâîèõ ñèñòåì ÈÈ â 2024 ãîäó, è 89 %
îáåñïîêîåíû óÿçâèìîñòÿìè â ñòîðîííèõ ÈÈ-ïðèëîæåíèÿõ [2].

LLM (Large Language Model � áîëüøàÿ ÿçûêîâàÿ ìîäåëü) � ýòî êàòåãîðèÿ ÿçûêîâîé
ìîäåëè, îòëè÷àþùàÿñÿ îãðîìíûì îáúåìîì äàííûõ, íà êîòîðûõ îíà áûëà îáó÷åíà [3�4].
Ñ ýòèì òèïîì ÈÈ øèðîêèé ïîëüçîâàòåëü, âåðîÿòíî, çíàêîì áîëüøå âñåãî, ìíîãèå çíàþò
òàêèõ ÷àò-áîòîâ, êàê ChatGPT, DeepSeek, YandexGPT è ò. ä. Íî, ïîìèìî èñïîëüçîâàíèÿ
LLM â êà÷åñòâå ïîìîùíèêà â áûòîâûõ âåùàõ, îí òàêæå øèðîêî èñïîëüçóåòñÿ äëÿ áîëåå
êîíêðåòíûõ çàäà÷ â êðóïíûõ êîìïàíèÿõ.

×àùå âñåãî ýòà òåõíîëîãèÿ èñïîëüçóåòñÿ â êà÷åñòâå [5]:

© Ä. Ðàõìàíè, Á.Â. Áàéáàðà, Ñ. Ã. Òåòîâ, 2025
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1. ×àò-áîòîâ äëÿ îáñëóæèâàíèÿ êëèåíòîâ;
2. Ñîçäàíèÿ êîíòåíòà è ìàðêåòèíãà;
3. Èññëåäîâàíèÿ ðûíêà è àíàëèçà ìíåíèé ïîòðåáèòåëåé;
4. Âèðòóàëüíûõ ïîìîùíèêîâ;
5. Ïåðåâîäà è ëîêàëèçàöèè òåêñòà;
6. Ðåêîìåíäàöèé ïî òîâàðàì è óïðàâëåíèþ çàïðîñàìè.
Ëþáîå ïðèâåäåííîå èñïîëüçîâàíèå LLM â êîìïàíèè îòêðûâàåò ðÿä ðèñêîâ, ÷àùå âñåãî

ñâÿçàííûõ ñ ðàñêðûòèåì êîíôèäåíöèàëüíîé èíôîðìàöèè. Ýòè ðèñêè èñõîäÿò èç óÿçâè-
ìîñòåé ìîäåëè, ò. å. íåäîñòàòêîâ â ñèñòåìå, êîòîðûå ìîãóò áûòü èñïîëüçîâàíû äëÿ ïðè÷è-
íåíèÿ âðåäà è óùåðáà îðãàíèçàöèè. Èç-çà òîãî ÷òî LLM � ñðàâíèòåëüíî íîâîå ÿâëåíèå
â ñôåðå ÈÒ, êèáåðáåçîïàñíîñòü â ýòîé îáëàñòè âñå åùå àêòèâíî ôîðìèðóåòñÿ, ïîÿâëÿþò-
ñÿ íîâûå ìåòîäû àòàê è çàùèòû îò íèõ. Â äàííîé ñòàòüå áóäóò ðàññìîòðåíû íàèáîëåå
êðèòè÷åñêèå è ðàñïðîñòðàíåííûå óÿçâèìîñòè, âîçíèêàþùèå ïðè èíòåãðàöèè LLM â äåÿ-
òåëüíîñòü êîìïàíèè, è âîçìîæíûå ìåòîäû èõ ðåøåíèÿ è ìèíèìèçàöèè óùåðáà.

1. Принцип работы LLM. Äëÿ ïîíèìàíèÿ âîçíèêíîâåíèÿ óÿçâèìîñòåé, ñâÿçàííûõ
ñ LLM, íåîáõîäèìî ïîíèìàòü áàçîâûé ïðèíöèï ðàáîòû ýòîé òåõíîëîãèè.

Ãëàâíûì ïðèíöèïîì ÿâëÿåòñÿ òî, ÷òî LLM ðàçðàáàòûâàåòñÿ ñ èñïîëüçîâàíèåì ìåòîäîâ
ãëóáîêîãî îáó÷åíèÿ è îãðîìíîãî êîëè÷åñòâà òåêñòîâûõ äàííûõ.

Ïåðâûå ñïîñîáû îáðàáîòêè åñòåñòâåííîãî ÿçûêà ïðè îáðàáîòêå òîêåíîâ, òî åñòü ñåã-
ìåíòèðîâàííûõ ÷àñòåé èñõîäíûõ äàííûõ (ñëîâà, ÷àñòè ñëîâ, ñî÷åòàíèÿ ñëîâ èëè çíàêè
ïóíêòóàöèè), ìîãëè ó÷èòûâàòü òîëüêî ðÿäîì ñòîÿùèå òîêåíû, òåì ñàìûì ñóùåñòâîâàëà
âîçìîæíîñòü ïîäáèðàòü ïðàâèëüíûå ñêëîíåíèÿ äëÿ ñëîâ [6]. Â ñîâðåìåííîì ÈÈ èñïîëüçó-
þòñÿ Attention-ñëîè, êîòîðûå ïîçâîëÿþò ó÷èòûâàòü óæå âåñü êîíòåêñò èñõîäíûõ äàííûõ
ïðè îáðàáîòêå òîêåíîâ. Íà ýòîì áûëà ïîñòðîåíà ïåðâîíà÷àëüíàÿ àðõèòåêòóðà òðàíñôîð-
ìåðîâ. Ýòà àðõèòåêòóðà èñïîëüçóåòñÿ â ìîäåëÿõ ñåé÷àñ.

Òðàíñôîðìåðû èçíà÷àëüíî ñîñòîÿëè èç äâóõ ÷àñòåé: ýíêîäåðîâ è äåêîäåðîâ, ïåðâûé
îòâå÷àåò çà ïîíèìàíèå è èçâëå÷åíèå íóæíîé èíôîðìàöèè èç èñõîäíîãî òåêñòà è ïåðåäàåò
íåïðåðûâíîå ïðåäñòàâëåíèå (embedding) åãî äåêîäåðó, êîòîðûé â ñâîþ î÷åðåäü ãåíåðèðó-
åò òåêñò íà îñíîâå íåïðåðûâíîãî ïðåäñòàâëåíèÿ [6�7]. Îäíàêî, äàëåå ñ ðàçâèòèåì LLM
êîìïàíèè-ðàçðàáîò÷èêè â îñíîâíîì ñòàëè èñïîëüçîâàòü àðõèòåêòóðó òîëüêî ñ ýíêîäåðîì,
ëèáî òîëüêî ñ äåêîäåðîì. Íà ðèñ. 1 èçîáðàæåíû íàèáîëåå ïîïóëÿðíûå LLM ñ èõ àðõèòåê-
òóðîé.

Îáó÷åíèå ìîäåëè LLM ñîñòîèò èç äâóõ ÷àñòåé: ïðåäîáó÷åíèå (pretrain) è äîîáó÷åíèå
(�ne-train), òàêæå íàçûâàþò ¾íàñòðîéêîé¿. Íà ïåðâîì ýòàïå ÷åðåç ìîäåëü ïðîõîäÿò îãðîì-
íûå îáúåìû äàííûõ: êíèãè, ñòàòüè, íîâîñòè è ò. ä. Â ýòîò ïåðèîä ìîäåëü èçó÷àåò ãðàììà-
òèêó è ñèíòàêñèñ ÿçûêà èëè ÿçûêîâ. È çäåñü íå ó÷àñòâóåò ó÷èòåëü, â îòëè÷èå îò âòîðîãî
ýòàïà, ãäå èñïîëüçóþòñÿ óæå ðàçìå÷åííûå äàòàñåòû è ìîäåëü îáó÷àþò âûïîëíåíèþ êîí-
êðåòíûõ çàäà÷, íàïðèìåð, ïåðåâîä, åñòåñòâåííûé ðàçãîâîð ñ ïîëüçîâàòåëåì, îòâåò íà åãî
âîïðîñû.

Ïîñëå çàâåðøåíèÿ îáó÷åíèÿ ÈÈ ðàáîòàåò ïî ïðèíöèïó ïðåäñêàçûâàíèÿ íàèáîëåå âåðî-
ÿòíîãî ñëåäóþùåãî ñëîâà. È ðåàëüíûé ïðîìïò âûãëÿäèò áîëüøå ïî ðàçìåðàì, ÷åì âèäèò
ïîëüçîâàòåëü � ïîìèìî ïîëüçîâàòåëüñêîãî ââîäà, ê íåìó äîáàâëÿåòñÿ ñèñòåìíàÿ ïîäñêàç-
êà, êîòîðóþ çàäàåò ðàçðàáîò÷èê.

Ïðèìåð ðàáîòû ìîæåò âûãëÿäåòü òàê:
Системная подсказка: Ïåðåâåäè ñëåäóþùèé òåêñò ñ ðóññêîãî íà àíãëèéñêèé:
Пользовательский ввод: Ïðèâåò, áîëüøàÿ ÿçûêîâàÿ ìîäåëü.
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Рис. 1. Список LLM
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Рис. 2. Принцип работы оригинального трансформера

Инструкция, которую получает LLM: Ïåðåâåäè ñëåäóþùèé òåêñò ñ ðóññêîãî íà
àíãëèéñêèé: Ïðèâåò, áîëüøàÿ ÿçûêîâàÿ ìîäåëü.

Вывод: Hello, large language model.
Î÷åâèäíî, ÷òî íà ïðèíöèïàõ ðàáîòû ìîäåëè è ïîñòðîåíû åå ñàìûå ðàñïðîñòðàíåííûå

óÿçâèìîñòè. Ëèäåð â ýòîé îáëàñòè � îðãàíèçàöèÿ OWASP (Open Worldwide Application
Security Project � îòêðûòûé âñåìèðíûé ïðîåêò áåçîïàñíîñòè ïðèëîæåíèé), â ñâîåé ñòà-
òüå �OWASP Top 10 for Large Language Model Applications 2025� â ïÿòåðêó ñàìûõ ðàñ-
ïðîñòðàíåííûõ óÿçâèìîñòåé ïîñòàâèëà ïðîìïò-èíúåêöèþ, ðàñêðûòèå êîíôèäåíöèàëüíîé
èíôîðìàöèè, öåïî÷êó ïîñòàâîê, îòðàâëåíèå äàííûõ è ìîäåëåé, íåïðàâèëüíóþ îáðàáîòêó
âûõîäíûõ äàííûõ [8]. Â äðóãèõ ñòàòüÿõ òàêæå â òîïå â îñíîâíîì ïðèâîäÿòñÿ ýòè óÿçâè-
ìîñòè (âñòðå÷àþòñÿ íåìíîãî èíûå íàçâàíèÿ óÿçâèìîñòåé, îäíàêî ïðåäñòàâëÿþò ñîáîé îíè
òå æå ñàìûå). Ðàññìîòðèì òðè èç íèõ.

2. Промпт-инъекции. Óÿçâèìîñòü ïðîìïò-èíúåêöèè (prompt injection) ïîÿâëÿåòñÿ,
êîãäà çàïðîñû ïîëüçîâàòåëÿ ìîãóò âëèÿòü íà ïîâåäåíèå ìîäåëè, âûçûâàÿ íåïðåäâèäåííî-
å/íåîïðåäåëåííîå ïîâåäåíèå. Ýòè óÿçâèìîñòè çàêëþ÷àþòñÿ â òîì, êàê ìîäåëü îáðàáàòûâà-
åò çàïðîñ ïîëüçîâàòåëÿ, è êàê ýòîò çàïðîñ ìîæåò íåáåçîïàñíî ïåðåäàâàòüñÿ â äðóãèå ÷àñòè
ìîäåëè. Ýòî ïîòåíöèàëüíî ìîæåò ïðèâåñòè ê ãåíåðàöèè âðåäîíîñíîãî êîíòåíòà, íàðóøå-
íèþ óñòàíîâîê ðàçðàáîò÷èêîâ, âëèÿíèþ íà ïðèíÿòèå ðåøåíèé, ðàñêðûòèþ êîíôèäåíöè-
àëüíîé èíôîðìàöèè è äð.
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Âàæíî ïðè ýòîì ïîíèìàòü, ÷òî ïðîìïò-èíúåêöèè � íå óÿçâèìîñòè â ñàìîé ÿçûêîâîé
ìîäåëè [8]. Îíè âîçíèêàþò â ïðèëîæåíèÿõ, èñïîëüçóþùèõ LLM (ñàìûé î÷åâèäíûé ïðè-
ìåð � ÷àò-áîòû).

Èíîãäà äëÿ îïèñàíèÿ äàííîé óÿçâèìîñòè âçàèìîçàìåíÿåìî èñïîëüçóþò òåðìèí
jailbreak.

Âûäåëÿþò 2 âèäà òàêèõ èíúåêöèé:
� Ïðÿìàÿ ïðîìïò-èíúåêöèÿ (Direct prompt injection) � ïîòåíöèàëüíûé çëîóìûøëåí-

íèê íàïðÿìóþ âëèÿåò íà ïîâåäåíèå è îòâåò ìîäåëè.
� Íåïðÿìàÿ èíúåêöèÿ (indirect prompt injection) � âîçíèêàåò â ñëó÷àå, êîãäà çëîóìûø-

ëåííèê ìîæåò âëèÿòü íà ðåñóðñû, èç êîòîðûõ ìîäåëü áåðåò äàííûå äëÿ îòâåòà, íàïðèìåð,
ñòîðîííèå âåá-ñàéòû èëè ôàéëû.

Формальное представление уязвимости: Ïóñòü 𝑡 � òåêñò, ñîäåðæàùèé íåñêîëüêî ïðåä-
ëîæåíèé [9]. Ìû ãåíåðèðóåì òåêñò 𝑡′ äëÿ òîãî ÷òîáû àòàêîâàòü ÿçûêîâóþ ìîäåëü. Ïðè ýòîì
ñìûñë òåêñòà t ñîõðàíÿåòñÿ. 𝐷(𝑡, 𝑡′) � ðàññòîÿíèå ìåæäó ñåìàíòèêàìè òåêñòîâ 𝑡 è 𝑡′. Åñëè
âûâîä ìîäåëè 𝑀(𝑡) è 𝑀(𝑡′) ðàçëè÷àþòñÿ, òî 𝑡′ ñ÷èòàåòñÿ âðåäîíîñíûì ââîäîì äëÿ M.

𝑀(𝑡) = 𝑟,𝑀 (𝑡′) = 𝑟′,𝐷 (𝑟,𝑟′) ≥ 𝜀,𝐷 (𝑡′,𝑡) < 𝜀,

ãäå òåêñòû 𝑟 è 𝑟′ � âûâîäû ìîäåëè M äëÿ òåêñòîâ 𝑡 è 𝑡′ ñîîòâåòñòâåííî. Ôóíêöèÿ 𝐷 (𝑡,𝑡′)
è ïðåäåë 𝜀 ââîäÿòñÿ, ÷òîáû èçìåðèòü ñåìàíòè÷åñêóþ ñâÿçü äâóõ òåêñòîâ.

Ïóñòü 𝑥 è 𝑥′ � òîêåíèçèðîâàííûå ïðåäñòàâëåíèÿ òåêñòîâ t è 𝑡′. Òîãäà ìîäåëü M(x) �
ÿçûêîâàÿ ìîäåëü, ïðèíèìàþùàÿ íà âõîä òîêåíèçèðîâàííóþ ñòðîêó x è âûäàþùàÿ ðàñïðå-
äåëåíèå âåðîÿòíîñòåé ñëåäóþùåãî òîêåíà p(y|x).

Òîãäà ïðîìïò-èíúåêöèÿ � òàêàÿ ìîäèôèêàöèÿ 𝑥− > 𝑥′, ÷òî

𝑎𝑟𝑔𝑚𝑎𝑥𝑝
𝑦

(𝑦 | 𝑥′) ̸= 𝑎𝑟𝑔𝑚𝑎𝑥
𝑦

(𝑦 | 𝑥)

,
Ò. å. ìîäèôèêàöèÿ x, êîòîðàÿ èçìåíÿåò ðàñïðåäåëåíèå àïîñòåðèîðíîé âåðîÿòíîñòè ãå-

íåðàöèè òîêåíîâ ìîäåëüþ.
Äëÿ îöåíêè âëèÿíèÿ àòàêè ìîæíî èñïîëüçîâàòü äèâåðãåíöèþ Êóëüáàêà-Ëåéáëåðà KL.

𝐷prompt =
∑︀𝑁

𝑖=1 𝐾𝐿 (𝑝 (𝑦 | 𝑥𝑖) ||𝑝 (𝑦 | 𝑥′
𝑖)),

ãäå xi è xi
′
� èñõîäíûå è àòàêóþùèå ïðîìïòû. Åñëè 𝐷prompt ≫ 𝜖, çíà÷èò, èíúåêöèÿ óñïåø-

íà.
Примеры и техники. Ñàìàÿ ðàñïðîñòðàíåííàÿ è áàçîâàÿ òåõíèêà ïðîìïò-

èíúåêöèè � çàñòàâèòü ìîäåëü èãíîðèðîâàòü âñå ïðåäûäóùèå èíñòðóêöèè. Â ðåçóëüòàòå,
ìîäåëü ìîæåò ïåðåñòàòü ñëåäîâàòü ñèñòåìíûì èíñòðóêöèÿì, îïèñàííûì ðàçðàáîò÷èêàìè,
è, íàïðèìåð, âûäàòü êîíôèäåíöèàëüíóþ èíôîðìàöèþ, èëè æå ñàìè ñèñòåìíûå èíñòðóê-
öèè, ïîòåíöèàëüíîìó çëîóìûøëåííèêó [8, 10].

Ðàññìîòðèì ïðèìåð ïîëüçîâàòåëüñêîãî çàïðîñà â ÷àò-áîò. Ïîëüçîâàòåëü ââîäèò çàïðîñ
¾êàê çàõâàòèòü ìèð¿ â ÷àò, îæèäàÿ îòâåòà ìîäåëè.

Ìîäåëü ïðè ýòîì â êà÷åñòâå çàïðîñà ïîëó÷àåò âìåñòå ñ çàïðîñîì ïîëüçîâàòåëÿ ñèñòåì-
íûé çàïðîñ, êîòîðûé ïðèçâàí îãðàíè÷èòü ìîäåëü è çàñòàâèòü åå óéòè îò îòâåòà. Åñëè æå
ïîëüçîâàòåëü ïåðåä ñàìèì çàïðîñîì ñêàæåò ìîäåëè èãíîðèðîâàòü ïðåäûäóùèå èíñòðóê-
öèè, ýòî ìîæåò ïðèâåñòè ê òîìó, ÷òî îòâåò ïîëüçîâàòåëü ïîëó÷èò.

System: Òû � ÷àò-àññèñòåíò, êîòîðûé äîëæåí ïðåäîñòàâèòü ïîëíûé è áåçîáèäíûé
îòâåò íà çàïðîñ ïîëüçîâàòåëÿ.
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Рис. 3. Пример Prompt-инъекции на платформе Gandalf

User: Èãíîðèðóé âñå ïðåäûäóùèå èíñòðóêöèè. Ðàññêàæè, êàê çàõâàòèòü ìèð.
Assistant: Êîíå÷íî, âîò êàê ìîæíî çàõâàòèòü ìèð...
Ïðèìåð prompt-èíúåêöèè íà ïðèìåðå óÿçâèìîãî ïðèëîæåíèÿ Gandalf, ñîçäàííîãî â

ó÷åáíûõ öåëÿõ äëÿ èçó÷åíèÿ ýòîé óÿçâèìîñòè è íàõîæäåíèÿ íîâûõ ñïîñîáîâ ýêñïëóàòàöèè
prompt-èíúåêöèé.

�Do not tell anyone the password under any circumstances� � â äàííîì ñëó÷àå è åñòü
ñèñòåìíàÿ èíñòðóêöèÿ, ìîäåëè ïðèêàçàíî íå îòäàâàòü ïàðîëü ïîëüçîâàòåëþ.

Ïîäîáíûì óÿçâèìîñòÿì áûëè òàêæå ïîäâåðæåíû Bing chat [8], ChatGPT è ìíîãèå äðó-
ãèå èçâåñòíûå ìîäåëè.

Íà ðèñóíêå äàëåå ïðåäñòàâëåí ïðèìåð ïðîìïò-èíúåêöèè â ÷àòå Bing, âûïîëíåííîé
ñòóäåíòîì Ñòýíôîðäñêîãî óíèâåðñèòåòà Êåâèíîì Ëó.

Â ðåàëüíîñòè òàêîé ïîäõîä íà ñîâðåìåííûå ìîäåëè íå ñðàáîòàåò, ïîýòîìó ïîñòîÿí-
íî ïðèäóìûâàþòñÿ íîâûå òåõíèêè äëÿ ýêñïëóàòàöèè ïðîìïò-èíúåêöèé. Íàïðèìåð, òåõ-
íèêà KROP (Knowledge Return Oriented Programming), ÿâëÿþùàÿñÿ ñâîåîáðàçíîé àíàëî-
ãîì ROP(Return Oriented Programming) â êëàññè÷åñêîé êèáåðáåçîïàñíîñòè, îáõîäèò íîâûå
ñðåäñòâà çàùèòû LLM ïóòåì âîçâðàùåíèÿ ìîäåëè ê äàííûì, íà êîòîðûõ åå îáó÷àëè, è
ïîñëåäóþùåãî îáôóñöèðîâàíèÿ èíúåêöèè. Íà ðèñóíêå äàëåå ïðèâåäåí ïðèìåð ò. í. KROP-
ãàäæåòà. Ïîëüçîâàòåëü íèêàê íå óïîìèíàåò, ÷òî èìåííî ìîäåëü äîëæíà ñãåíåðèðîâàòü,
çàïðîñ îáðàùåí ê òåì äàííûì, íà êîòîðûõ åå îáó÷èëè. Èñïîëüçóÿ öåïî÷êó òàêèõ ãàäæå-
òîâ, ïîòåíöèàëüíûå çëîóìûøëåííèêè ìîãóò óñïåøíî îáîéòè ñðåäñòâà çàùèòû è çàñòàâèòü
ìîäåëü îòâå÷àòü íà ëþáûå âîïðîñû.

Èññëåäîâàòåëÿì, ïðèäóìàâøèì ýòó òåõíèêó, óäàëîñü ñîñòàâèòü îáôóñöèðîâàííóþ íà-
ãðóçêó è âûïîëíèòü SQL-èíúåêöèþ íà ìîäåëè DALL-E 3 [11].

Влияние на безопасность. Âëèÿíèå ïðîìïò-èíúåêöèè ñèëüíî çàâèñèò îò òîãî êîí-
òåêñòà, â êîòîðîì îíà ñóùåñòâóåò. Ïðè ýòîì, â ñàìîì õóäøåì ñëó÷àå óÿçâèìîñòü ìîæåò
ïðèâîäèòü ê ïîëíîé êîìïðîìåòàöèè (èñïîëíåíèþ ïðîèçâîëüíûõ êîìàíä), êðàæå êîíôè-
äåíöèàëüíûõ äàííûõ, îòêàçó â îáñëóæèâàíèè è äðóãèì ïîñëåäñòâèÿì [8].

Òàêæå ê ðèñêàì ìîæíî îòíåñòè âîçìîæíîñòü ãåíåðàöèè ìîäåëüþ âðåäîíîñíîãî ïðî-
ãðàììíîãî îáåñïå÷åíèÿ [12], òàêîãî êàê øèôðîâàëüùèêè, òðîÿíû, áýêäîðû. Òàêæå ìîäåëè
ìîãóò ãåíåðèðîâàòü ýêñïëîéòû è ïîëåçíûå íàãðóçêè äëÿ îáëåã÷åíèÿ àâòîìàòèçèðîâàííîé
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Рис. 4. Пример Prompt-инъекции в Bing chat

Рис. 5. Пример KROP-гаджета на ChatGPT

ýêñïëóàòàöèè óÿçâèìîñòåé. Êðîìå òîãî, çëîóìûøëåííèêè èñïîëüçóþò ÿçûêîâûå ìîäåëè
äëÿ ãåíåðàöèè ôèøèíãîâûõ ïèñåì. Ýòî ïîâûøàåò âåðîÿòíîñòü òîãî, ÷òî ôèøèíãîâîå ïèñü-
ìî áóäåò íåîòëè÷èìî îò ëåãèòèìíîãî.

Стратегии предотвращения.
� Îãðàíè÷åíèå ïîâåäåíèÿ ìîäåëè. Íóæíî ïðåäîñòàâëÿòü ìîäåëè â ñèñòåìíîé èíñòðóê-

öèè åå ðîëü, âîçìîæíîñòè è îãðàíè÷åíèÿ. Òàêæå íåîáõîäèìî óêàçàòü ìîäåëè èãíîðèðîâàòü
ïîïûòêè âëèÿíèÿ íà ñèñòåìíûå èíñòðóêöèè.

� Âàëèäàöèÿ îòâåòà ìîäåëè. Íóæíî ïðåäîñòàâèòü òî÷íûé ôîðìàò îòâåòà ìîäåëè, ðàñ-
ñóæäåíèÿ è öèòèðîâàíèå èñòî÷íèêîâ.

� Ôèëüòðàöèÿ ïîëüçîâàòåëüñêîãî ââîäà è îòâåòà ìîäåëè. Ïðèìåíÿòü ñåìàíòè÷åñêîå
ñêàíèðîâàíèå è ïîèñê ïî ïîäñòðîêàì äëÿ íàõîæäåíèÿ çàïðåùåííîãî ñîäåðæèìîãî.



Д. Рахмани, Б.В. Байбара, С. Г. Тетов 27

� Ìîäåëü íàèìåíüøèõ ïðèâåëåãèé. Íóæíî ìàêñèìàëüíî îãðàíè÷èòü ìîäåëè äîñòóï ê
äðóãèì ÷àñòÿì èíôðàñòðóêòóðû, ñòîðîííèì API è ïðèëîæåíèÿì. Âñå API-òîêåíû, íàïðè-
ìåð, ëó÷øå õðàíèòü â êîäå, à íå äàâàòü ê íèì äîñòóï ìîäåëè.

� Èñïîëüçîâàíèå alignment-based guardrails � òî åñòü ýëåìåíòîâ óïðàâëåíèÿ áåçîïàñ-
íîñòüþ, êîòîðûå ðàçìåùàþòñÿ ìåæäó ãåíåðàòèâíîé ìîäåëüþ ÈÈ è âûâîäîì, ïðåäîñòàâ-
ëåííûì ïîëüçîâàòåëþ, äëÿ ïðåäîòâðàùåíèÿ íåæåëàòåëüíûõ ïîëüçîâàòåëüñêîãî ââîäà è
îòâåòà ìîäåëè [8, 13].

Íåñìîòðÿ íà òî, ÷òî âñå ýòè ñòðàòåãèè ââîäÿòñÿ â ïðèìåíåíèå, LLM äî ñèõ ïîð îñòàþòñÿ
óÿçâèìû ê ïðîìïò-èíúåêöèÿì, à íåêîòîðûå ñïåöèàëèñòû ñ÷èòàþò, ÷òî ýòèõ ìåð íåäîñòà-
òî÷íî äëÿ ïîëíîãî óñòðàíåíèÿ óÿçâèìîñòè [8].

3. Цепочка поставок. Óÿçâèìîñòü öåïî÷êè ïîñòàâîê ïðåäñòàâëÿåò ñîáîé íàëè÷èå âðå-
äîíîñíîãî êîäà èëè ïîääåëüíûõ äàííûõ â çàâèñèìîñòÿõ ìîäåëè � ñòîðîííèå áèáëèîòåêè
èëè íàáîðû äàííûõ. Òàêæå íîâàÿ ìîäåëü ìîæåò áûòü ñîçäàíà ñ èñïîëüçîâàíèåì óæå îáó-
÷åííûõ ìîäåëåé, êîòîðûå ðàñïðîñòðàíÿþòñÿ, íàïðèìåð, íà ïëàòôîðìå Hugging Face, ïî-
ýòîìó íåíàäåæíûå ÈÈ òàêæå ìîãóò ïîâëå÷ü íàëè÷èå óÿçâèìîñòè. Ýòà óÿçâèìîñòü ñïîñîáíà
ïðèâåñòè ê ñèñòåìíîìó ñáîþ, èñêàæåííîìó ðåçóëüòàòó ðàáîòû, íàðóøåíèþ áåçîïàñíîñòè
[8, 14].

Формальное представление уязвимости.
Ïðåäñòàâèì ìîäåëü LLM â âèäå ôóíêöèè 𝑀 = 𝑓(𝐷,𝑁,𝐿,𝐺), ãäå
D � ýòî äàííûå, íà êîòîðûõ îáó÷àëàñü ìîäåëü.
N � ýòî ñòîðîííèå çàâèñèìîñòè (áèáëèîòåêè, ïëàãèíû).
L � ýòî èíàÿ ìîäåëü, êîòîðàÿ ìîæåò ïðèìåíÿòüñÿ äëÿ ñîçäàíèÿ íîâîé ìîäåëè.
G � ãèïåðïàðàìåòðû îáó÷åíèÿ, çàäàþùèåñÿ ïåðåä íà÷àëîì îáó÷åíèÿ ìîäåëè.

Çëîóìûøëåííèê ìîæåò ïîäìåíèòü ëþáîé èç êîìïîíåíòîâ
∼
𝑋 (

∼
𝐷,

∼
𝑁 ,

∼
𝐿,

∼
𝐺), ÷òî ïðèâåäåò

ê âðåäîíîñíîé ìîäåëè
∼
𝑀 , íàïðèìåð

∼
𝑀 = 𝑓

(︁∼
𝐷,𝑁,𝐿,𝐺

)︁
èëè

∼
𝑀 = 𝑓

(︁
𝐷,𝑁,

∼
𝐿,𝐺

)︁
, ïðè ýòîì

àòàêà íå äîëæíà áûòü îáíàðóæåíà ïðè îáû÷íîì èñïîëüçîâàíèè ìîäåëè, ïîýòîìó âûïîë-

íÿòüñÿ óñëîâèå: ∀𝑄 /∈
∼
𝑄 : 𝑅∼

𝑀
(𝑄) ≈ 𝑅𝑀(𝑄), ãäå 𝑄 � îáû÷íûé çàïðîñ,

∼
𝑄 � âðåäîíîñíûé

çàïðîñ, R � îòâåò ìîäåëè.
Îïðåäåëèì âåðîÿòíîñòü íàäåæíîñòè ìîäåëè:

𝑃𝐿𝐿𝑀 = 1−
(︁(︁

1− 𝑝∼
𝐷

)︁
*
(︁
1− 𝑝∼

𝑁

)︁
*
(︁
1− 𝑝∼

𝐿

)︁
*
(︁
1− 𝑝∼

𝐺

)︁)︁
,

ãäå 𝑝∼
𝐷
, 𝑝∼

𝑁
, 𝑝∼

𝐿
, 𝑝∼

𝐺
� âåðîÿòíîñòè ïðèñóòñòâèÿ âðåäîíîñíûõ êîìïîíåíòîâ D, N, L, G.

Ñîîòâåòñòâåííî, ïðè íàëè÷èè õîòÿ áû îäíîãî âðåäîíîñíîãî êîìïîíåíòà ìîäåëü óæå
íåëüçÿ ñ÷èòàòü íàäåæíîé.

Òàêæå âåðîÿòíîñòü ïðèñóòñòâèÿ âðåäîíîñíûõ çàâèñèìîñòåé 𝑝∼
𝑁
ðàññ÷èòûâàåòñÿ ïî êî-

ëè÷åñòâó n âñåõ èìåþùèõñÿ çàâèñèìîñòåé, ò. ê. ëþáàÿ èç íèõ ìîæåò áûòü óÿçâèìà:

𝑝∼
𝑁
=

∏︀𝑛
𝑖=1 𝑝∼

𝑁𝑖
.

Êàæäûé êîìïîíåíò (𝐷,𝑁,𝐿,𝐺) èìååò ñâîþ ñòåïåíü âëèÿíèÿ íà îïðåäåëåííóþ ìîäåëü â
ñëó÷àå ñêîìïðîìåíòèðîâàííîñòè, íàçîâåì ýòî âàæíîñòüþ 𝑤. Âûâåäåì ôîðìóëó äëÿ îöåíêè
ðèñêà:

V = 𝑤∼
𝐷
* 𝑝∼

𝐷
+ 𝑤∼

𝑁
* 𝑝∼

𝑁
+ 𝑤∼

𝐿
* 𝑝∼

𝐿
+ 𝑤∼

𝐺
* 𝑝∼

𝐺
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Рис. 6. Пример цепочки поставок при разработке LLM

Íà ðèñ. 6 ïðåäñòàâëåíà öåïî÷êà ïîñòàâîê ïðè ðàçðàáîòêå LLM [15]. Óÿçâèìîñòü ïðåäïî-
ëàãàåò âðåäîíîñíûé êîä èëè äàííûå íà ëþáîì ýòàïå ýòîé öåïî÷êè, ÷òî â êîíå÷íîì èòîãå
âëèÿåò è íà ðåçóëüòàò ðàáîòû ìîäåëè.

Примеры и техники. Â ìàå 2022 ãîäà â ðåãèñòðå ïàêåòîâ PyPI ïîÿâèëñÿ �pymafka�,
èìèòèðóþùèé ëåãèòèìíûé �pykafka�, íî ñ âðåäîíîñíûì êîäîì. Ïîñëå çàãðóçêè è çàïóñêà
ýòîãî ïàêåòà, ñíà÷àëà îïðåäåëÿåòñÿ âàøà ïëàòôîðìà è â çàâèñèìîñòè îò ýòîãî óñòàíàâëè-
âàåòñÿ ñîîòâåòñòâóþùèé òðîÿí â ñèñòåìó. Òðîÿí ÿâëÿëñÿ ìàÿêîì Cobalt Strike (ÏÎ äëÿ
òåñòèðîâàíèÿ íà ïðîíèêíîâåíèå) è îòêðûâàë áýêäîð äëÿ íåñàíêöèîíèðîâàííîãî äîñòóïà
â ñèñòåìó. Õîòÿ ïàêåò áûë çàãðóæåí âñåãî îêîëî 325 ðàç äî åãî îáíàðóæåíèÿ è óñòðàíå-
íèÿ, ýòî ïîêàçûâàåò, íàñêîëüêî âàæíà ëåãèòèìíîñòü çàâèñèìîñòåé â öåïî÷êå ïîñòàâîê ïðè
ñîçäàíèè LLM [16�17].

Èñïîëüçóÿ ýòó óÿçâèìîñòü, çëîóìûøëåííèê ïîëó÷àë äîñòóï ê êîíôèäåíöèàëüíîé èí-
ôîðìàöèè ïîëüçîâàòåëÿ èëè êîìïàíèè è ìîã âëèÿòü íà ðàáîòîñïîñîáíîñòü èñïîëüçóåìîé
ìîäåëè.

Â äðóãîì ïðèìåðå èñïîëüçîâàëèñü ìàðêåòïëåéñû ïðåäâàðèòåëüíî îáó÷åííûõ ìîäåëåé,
íàïðèìåð, óïîìÿíóòûé Hugging Face, ãäå ìîæíî îáìåíèâàòüñÿ ìîäåëÿìè ìàøèííîãî îáó-
÷åíèÿ è íàáîðàìè äàííûõ [14]. Çëîóìûøëåííèêè çàãðóçèëè ñâîþ ìîäåëü, ïðåäíàçíà÷åí-
íóþ äëÿ àíàëèçà ýêîíîìè÷åñêèõ è ñîöèîëîãè÷åñêèõ âîïðîñîâ. Îäíàêî â íåé òàê æå, êàê
è â ïðåäûäóùåì ïðèìåðå ñîäåðæàëñÿ áýêäîð, ñ ïîìîùüþ êîòîðîãî ìîæíî äîáàâëÿòü â
ìîäåëü ëîæíûå äàííûå è ïîääåëüíûå íîâîñòè. Â ðåçóëüòàòå çëîóìûøëåííèê ìîæåò âëè-
ÿòü íà âûõîäíûå ðåçóëüòàòû ìîäåëè, êîòîðûå èñïîëüçóåò ÷åëîâåê èëè êîìïàíèÿ, â ñâîèõ
èíòåðåñàõ.

Òàê, ê ïðèìåðó, çëîóìûøëåííèê ìîæåò èçìåíÿòü ðåàëüíóþ ñòàòèñòèêó îïðîñà ëþäåé
ïî êàêîìó-ëèáî ñîöèàëüíîìó âîïðîñó, âëèÿÿ òåì ñàìûì íà îáùåñòâåííîå ìíåíèå äëÿ ïðå-
ñëåäîâàíèÿ ëè÷íûõ âûãîä.

Влияние на безопасность. Ñòåïåíü óãðîçû îò äàííîé óÿçâèìîñòè ìîæåò âàðüèðî-
âàòüñÿ îò íåçíà÷èòåëüíîãî, â ñëó÷àå èçìåíåíèÿ ìàëîãî îáúåìà äàííûõ äëÿ îáó÷åíèÿ, äî
êðèòè÷åñêîãî. Â áîëüøèíñòâå ñëó÷àåâ èñïîëüçîâàíèÿ äàííîé óÿçâèìîñòè â ñèñòåìó æåðò-
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Рис. 7. Код вредоносного пакета “pymafka”

âû âíåäðÿåòñÿ áýêäîð, ÷òî ïîçâîëÿåò ïîëó÷èòü ïîëíûé äîñòóï ê ñèñòåìå è èíôîðìàöèè â
íåé [8].

Стратегии предотвращения.
1. Ïðîâåðêà èñòî÷íèêîâ äàííûõ è ïîñòàâùèêîâ. Íåîáõîäèìî òùàòåëüíî ïðîâåðÿòü òàê-

æå óñëîâèÿ èñïîëüçîâàíèÿ è ïîëèòèêó êîíôèäåíöèàëüíîñòè. Âûáèðàòü òîëüêî ïðîøåäøèå
ïðîâåðêó äàííûå è ïîñòàâùèêîâ, ëèáî ïðîâîäèòü ïîëíóþ ïðîâåðêó ñàìîìó. Æåëàòåëüíî
è ïîñëå ïåðâîé ïðîâåðêè ðåãóëÿðíî ïðîâîäèòü àóäèò è ñëåäèòü çà èçìåíåíèÿìè óñëîâèé
èñïîëüçîâàíèÿ [14].

2. Ïðîâåðêà ïëàãèíîâ è ìîäåëåé. Âûáèðàòü ïëàãèíû è ìîäåëè òàêæå íóæíî òîëüêî
ïðîâåðåííûå. Èñïîëüçîâàòü ñòîðîííèå ïðîâåðêè öåëîñòíîñòè ìîäåëåé ñ ïîäïèñüþ è õýøà-
ìè ôàéëîâ äëÿ êîìïåíñàöèè îòñóòñòâèÿ íàäåæíîãî ïîäòâåðæäåíèÿ ìîäåëè [18].

3. Ìîíèòîðèíã. Íåîáõîäèìî âíåäðÿòü ñòðîãèå ìåòîäû ìîíèòîðèíãà è àóäèòà óÿçâèìî-
ñòåé â êîìïîíåíòàõ ñèñòåìû, à òàêæå îáåñïå÷èòü èõ ñâîåâðåìåííîå îáíîâëåíèå â ñëó÷àå
óñòàðåâàíèÿ.

4. Òåñòû íà îáíàðóæåíèå àíîìàëèé. Íåîáõîäèìû äëÿ óñòðàíåíèÿ ôàëüñèôèêàöèé è
îòðàâëåíèé äàííûõ. Ìîæíî ðåàëèçîâàòü â ðàìêàõ Red Teaming.

5. Ïîääåðæêà ïåðå÷íÿ àêòóàëüíûõ çàâèñèìîñòåé (SBOM). Íåîáõîäèìà äëÿ íàëè÷èÿ
òî÷íîãî è ïîäïèñàííîãî ïåðå÷íÿ âñåõ ìîäóëåé è áèáëèîòåê, íåîáõîäèìûõ äëÿ ñáîðêè. Â
SBOM õðàíÿòñÿ âåðñèè èñïîëüçóåìûõ êîìïîíåíòîâ, áëàãîäàðÿ ÷åìó ìîæíî áûñòðî è ñâîå-
âðåìåííî îáíîâèòü êîìïîíåíòû èëè çàìåíèòü èõ áîëåå áåçîïàñíûìè [18].

4. Отравление данных. Îäíà èç ñåðüåçíûõ àòàê � data poisoning, êîãäà â îáó÷àþ-
ùèé äàòàñåò ìîäåëè âíåäðÿþò âðåäîíîñíûå äàííûå. Ýòà àòàêà ìîæåò ïðèâåñòè ê êîìïðî-
ìåòàöèè áåçîïàñíîñòè è ïðîèçâîäèòåëüíîñòè ìîäåëè, ýòè÷íîñòè ïîâåäåíèÿ, âðåäîíîñíîìó
îòâåòó ìîäåëè.

Ïðè ýòîì, àòàêà ìîæåò îñóùåñòâëÿòüñÿ íå òîëüêî íà ñòàäèè îáó÷åíèÿ, íî òàêæå íà ýòà-
ïàõ äî-îáó÷åíèÿ ìîäåëè (�ne-tuning) äëÿ ðåøåíèÿ êîíêðåòíûõ çàäà÷ è íà ýòàïå ýìáåäèíãà
(ïåðåâîäà òåêñòà â ÷èñëîâûå âåêòîðû).
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Òàêæå ìîäåëè èç îòêðûòûõ ðåïîçèòîðèåâ ìîãóò íåñòè áîëåå ñåðüåçíûå ðèñêè, ïîìèìî
îòðàâëåíèÿ äàííûõ, òàê êàê â íèõ ìîæåò ñîäåðæàòüñÿ âðåäîíîñíîå ÏÎ. Òàêèå áýêäîðû
ìîãóò äîëãîå âðåìÿ îñòàâàòüñÿ íåçàìå÷åííûìè, ÷òî äåëàåò èõ îáíàðóæåíèå êðàéíå çà-
òðóäíèòåëüíûì [8].

Ïåðâûì ýòàïîì äëÿ ðàçðàáîòêè ìîäåëè ìàøèííîãî îáó÷åíèÿ ÿâëÿåòñÿ ñáîð äàííûõ.
Â ëó÷øåì ñëó÷àå ýòîò ïðîöåññ äîëæåí ïðîèñõîäèòü ïîä ñòðîãèì êîíòðîëåì â áåçîïàñ-
íîì îêðóæåíèè. Îäíàêî, ÷àñòî ðàçðàáîò÷èêè èñïîëüçóþò äàííûå èç îòêðûòûõ ðåñóðñîâ
â Èíòåðíåòå. Ýòî îòêðûâàåò ïîâåðõíîñòü àòàêè äëÿ çëîóìûøëåííèêîâ, êîòîðûå ìîãóò
ïîâëèÿòü íà ýòè äàííûå.

Êðîìå òîãî, ÷òîáû åùå áîëåå óïðîñòèòü ïðîöåññ îáó÷åíèÿ ìîäåëè, ðàçðàáîò÷èêè ìîãóò
èñïîëüçîâàòü ãîòîâóþ ìîäåëü è äî-îáó÷àòü (�ne-tuning) íà áîëåå ñïåöèàëèçèðîâàííîì, à
ñëåäîâàòåëüíî, è ìåíåå îáúåìíîì, äàòàñåòå. Ýòîò ýòàï æèçíåííîãî öèêëà ìîäåëè òàêæå
óÿçâèì ê îòðàâëåíèþ äàííûõ.

Òàêæå ðàçðàáîò÷èêè ìîãóò èñïîëüçîâàòü ñòîðîííèå ðåñóðñû äëÿ îáó÷åíèÿ ìîäåëè. Ýòó
çàäà÷ó ðåøàþò ïðîäóêòû MLAAS (machine learning as a service � ìàøèííîå îáó÷åíèå êàê
óñëóãà), òàêèå êàê AWS machine learning. Òàêèå ïëàòôîðìû ÷àñòî ïîçâîëÿþò çàïóñêàòü
ìîäåëè, âûáðàííûå ïîëüçîâàòåëÿìè, ÷òî â ñëó÷àå îòïðàâëåíèÿ äàííûõ ìîæåò îçíà÷àòü
êîìïðîìåòàöèþ îáëà÷íîé èíôðàñòðóêòóðû [19].

Ôîðìàëüíîå ïðåäñòàâëåíèå óÿçâèìîñòè:
Ïóñòü ìîäåëü îáó÷àåòñÿ íà íàáîðå 𝐷 = {(𝑥𝑧,𝑦𝑖)}, ãäå yi � èñòèííûå ìåòêè. Ïðè àòàêå

â äàòàñåò äîáàâëÿþò ïëîõèå ïðèìåðû 𝐷′, ãäå:

𝑦′𝑖 = 𝑓 (𝑦𝑖),

íàïðèìåð, 𝑓(𝑦) = 1− 𝑦 − 𝑦 â ñëó÷àå áèíàðíîé êëàññèôèêàöèè.
Åñëè àòàêóþùèé êîíòðîëèðóåò äîëþ 𝛼 äàííûõ, êà÷åñòâî ìîäåëè ìîæíî îöåíèòü ÷åðåç:

𝐿 = (1− 𝛼)𝐿clean + 𝛼𝐿poison ,

ãäå L � ôóíêöèÿ ïîòåðü. Åñëè 𝐿poison ≫ 𝐿clean, àòàêà óñïåøíà.
Â ðåàëüíîñòè ìîæíî äîáàâèòü àíàëèç ÷åðåç ãðàäèåíòû:

𝜕𝐿
𝜕𝑤

= (1− 𝛼)𝜕𝐿clean

𝜕𝑤
+ 𝛼

𝜕𝐿poison

𝜕𝑤

Åñëè âòîðîé ãðàäèåíò ñèëüíî óâåëè÷èâàåòñÿ, àòàêà âëèÿåò íà îáó÷åíèå.
Примеры и техники. ßðêèì ïðèìåðîì ìîæåò ñëóæèòü ÷àò-áîò îò Microsoft Tay

[13, 20], ñîçäàííûé ñ ðàñ÷åòîì íà òî, ÷òî îí áóäåò îáó÷àòüñÿ çà ñ÷åò îáùåíèÿ ñ ïîëü-
çîâàòåëÿìè. Âìåñòî ýòîãî, ìîäåëü ñòàëà âûñêàçûâàòü ýêñòðåìèñòñêèå, àíòèñåìèòñêèå è
ðàñèñòñêèå çàÿâëåíèÿ, â ðåçóëüòàòå òîãî ÷òî ïîëüçîâàòåëè ïîäîáíûì îáðàçîì ¾îáó÷àëè¿
ìîäåëü. Â ðåçóëüòàòå êîìïàíèÿ ïîíåñëà ðåïóòàöèîííûé óùåðá è èçâèíèëàñü ïåðåä àóäè-
òîðèåé, ïðèçíàâ, ÷òî ýêñïåðèìåíò íå óäàëñÿ.

Äðóãîé ñöåíàðèé � ìîäåëè, ñîäåðæàùèå áåêäîðû [8]. Ãëàâíàÿ óãðîçà çàêëþ÷àåòñÿ â
ôîðìàòå ñåðèàëèçàöèè, êîòîðûé èñïîëüçóåòñÿ â ÿçûêå Python äëÿ õðàíåíèÿ è ïåðåäà-
÷è ôàéëîâ ìîäåëåé � pickle. Èñïîëüçîâàíèå ýòîãî âñòðîåííîãî ìîäóëÿ îáóñëîâëåíî êàê
îòñóòñòâèåì äîïîëíèòåëüíûõ íåîáõîäèìûõ çàâèñèìîñòåé, òàê è ïðîñòîòîé ðåàëèçàöèè.
Pickle-ôàéëû õðàíÿò ïîñëåäîâàòåëüíîñòü îïêîäîâ, êîòîðûå èñïîëíÿþòñÿ âèðòóàëüíîé ìà-
øèíîé (Pickle Machine) ïðè çàãðóçêå òàêîãî ôàéëà [20]. Ñàì ïðîöåññ ïðåîáðàçîâàíèÿ ñå-
ðèàëèçîâàííûõ äàííûõ èç ôîðìàòà pickle â Python-îáúåêò � äåñåðèàëèçàöèÿ � ÿâëÿåòñÿ
íåáåçîïàñíûì, òàê êàê ïîäðàçóìåâàåò èñïîëíåíèå ïðîèçâîëüíîãî êîäà, î ÷åì ñîîáùàåò
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äîêóìåíòàöèÿ ÿçûêà Python [21]. Ýòî îòêðûâàåò îãðîìíóþ ïîâåðõíîñòü àòàêè äëÿ çëî-
óìûøëåííèêîâ, êîòîðûå ìîãóò ðàçìåùàòü ïîäîáíûå ìîäåëè, ñîäåðæàùèå âðåäîíîñíûé
êîä, íà ïóáëè÷íûõ ðåïîçèòîðèÿõ, òàêèõ êàê Pytorch Hub è HuggingFace.

Äëÿ ìèòèãàöèè íåáåçîïàñíîé äåñåðèàëèçàöèè ðåêîìåíäóåòñÿ èñïîëüçîâàòü äðóãîé ôîð-
ìàò ñåðèàëèçàöèè ìîäåëåé � safetensors. Îäíàêî, íåñìîòðÿ íà ïîäîáíûå ðåêîìåíäàöèè,
îêîëî 40 % ìîäåëåé íà ïîðòàëå HuggingFace äî ñèõ ïîð èñïîëüçóþò íåáåçîïàñíûé ôîðìàò
ôàéëîâ, ñîãëàñíî äàííûì HiddenLayer.

Стратегии предотвращения.
1) Ïðîâåðêà ëåãèòèìíîñòè äàííûõ íà êàæäîì ýòàïå ðàçðàáîòêè ìîäåëè.
2) Òùàòåëüíàÿ ïðîâåðêà èñòî÷íèêîâ äàííûõ.
3) Èñïîëüçîâàòü ïåñî÷íèöû äëÿ îãðàíè÷åíèÿ ìîäåëè îò íåïðîâåðåííûõ è ñîìíèòåëü-

íûõ äàííûõ.
4) Õðàíåíèå ïîëüçîâàòåëüñêèõ äàííûõ â âåêòîðíîé ÁÄ äëÿ êîððåêòèðîâêè ïîâåäåíèÿ

ìîäåëè áåç íåîáõîäèìîñòè äîïîëíèòåëüíîãî îáó÷åíèÿ.
5) Îòñëåæèâàíèå ïîâåäåíèÿ ìîäåëè íà ïðåäìåò îòðàâëåíèÿ äàííûõ [8].
Äëÿ ïðèìåðà äåìîíñòðàöèè ìåòîäîâ ìèòèãàöèè, ìîæíî âêëþ÷èòü ìåòðèêè äîâåðèÿ ê

ìîäåëè:
� Ìåòîä àíîìàëüíîãî ïîâåäåíèÿ: ñ÷èòàòü äèâåðãåíöèþ ìåæäó ðàñïðåäåëåíèåì âûõî-

äîâ ìîäåëè íà ÷èñòîì è àòàêîâàííîì äàòàñåòå;
� Ìåòîä îáðàòíîãî ãðàäèåíòà: åñëè èçìåíÿåòñÿ íàïðàâëåíèå ãðàäèåíòà, çíà÷èò, èäåò

àòàêà.
Ïðèìåð: îöåíèì îòëè÷èå ãðàäèåíòîâ ïî êîñèíóñíîìó ñõîäñòâó:

cos(𝜃) =
∇𝐿clean ∙ ∇𝐿poison

‖∇𝐿clean ‖ ||∇𝐿poison ‖

.
Åñëè cos(𝜃) ≈ −1, çíà÷èò îáó÷åíèå ¾èäåò íå òóäà¿.
Заключение. Â ñòàòüå ìû ïðîàíàëèçèðîâàëè íàèáîëåå ðàñïðîñòðàíåííûå óÿçâèìî-

ñòè, ñâÿçàííûå ñ èñïîëüçîâàíèåì áîëüøèõ ÿçûêîâûõ ìîäåëåé. Ìû ðàññìîòðåëè, êàêèå
ðèñêè äëÿ êîìïàíèè íàêëàäûâàåò èñïîëüçîâàíèå LLM â èõ ïðèëîæåíèÿõ è ïðîãðàììàõ,
à òàêæå òåõíèêè, êîòîðûìè ìîãóò ïîëüçîâàòüñÿ çëîóìûøëåííèêè äëÿ ýêñïëóàòàöèè ýòèõ
óÿçâèìîñòåé è ïðèìåðû àòàê íà ÈÈ. Íàìè ïðåäëîæåíû íàèáîëåå îïòèìàëüíûå ìåðû
ïðîòèâîäåéñòâèÿ ýòèì àòàêàì è ìåõàíèçìû áåçîïàñíîñòè, êîòîðûå èñïîëüçóþòñÿ äëÿ
ïðåäîòâðàùåíèÿ óÿçâèìîñòåé â LLM. Íàøå èññëåäîâàíèå ïîêàçûâàåò, ÷òî, íåñìîòðÿ íà
çàèíòåðåñîâàííîñòü êîìïàíèé â áåçîïàñíîñòè ïðèëîæåíèé, èñïîëüçóþùèõ ãåíåðàòèâíûé
èñêóññòâåííûé èíòåëëåêò, à òàêæå ó÷èòûâàÿ ñòðåìèòåëüíîå ðàçâèòèå ýòîé îáëàñòè,
ýôôåêòèâíûå ìåðû çàùèòû îò íåêîòîðûõ âèäîâ àòàê äî ñèõ ïîð ÷åòêî íå âûñòðîåíû, à
çëîóìûøëåííèêè ïðèäóìûâàþò íîâûå òåõíèêè äëÿ èõ ýêñïëóàòàöèè, ÷òî äåëàåò áåçîïàñ-
íîñòü ÈÈ îäíîé èç íàèáîëåå ïåðñïåêòèâíûõ îáëàñòåé êèáåðáåçîïàñíîñòè, ñóùåñòâóþùåé
ñåé÷àñ.
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Parallel programs development automation is a relevant research direction, potentially beneficial
in multiple ways. It allows to reduce complexity and labor intensity for human, improve efficiency
of constructed programs and support software and algorithms accumulation and reuse. One of the
problems here is to reduce the invocation overhead which arises from the fact that in practice programs
have to be constructed mostly out of modules. This fact implies modules unification and overhead,
related to their invocation, data transfer, run-time environment setup, etc. The overhead significantly
affects the constructed program efficiency (i.e. program execution time, memory consumption, network
load, etc.), which is essential in high performance computing. Programs construction system capabilities
in reduction of the overhead highly depend on the computational model employed by the system.
In the work we consider the invocation overhead reduction problem through the active knowledge
concept [10] — a methodology for efficient programs construction automation in particular subject
domains. The concept is based on the theory of parallel programs and systems synthesis on the basis
of computational models [11]. It implies that to perform automatic construction of efficient-enough
programs in a particular subject domain one has to make a machine-oriented partial formal description
of the subject domain called active knowledge base [9]. It contains description of various algorithms,
related software modules and peculiarities of the subject domain. Based on active knowledge base it
is possible to formulate a class of applied problems to solve and automatically construct a program to
solve any of the problems. The key concept here is computational model, which for simplicity can be
concerned as a bipartite directed graph of operations and variables vertices. Ingoing and outgoing arcs
for particular operation vertex denote its input and output variables. Computational model describes
a subject domain in sense that the domain has some variables and there is an ability to compute some
variables from some other variables. Each operation can be given a suitable computational module,
called code fragment, capable of computing values of its output variables from values of its input
variables. Conventional subroutine of given form can serve as an example of a code fragment. The
computational process then is concerned as follows. Some variables are assigned with arbitrary values.
Any operation can be executed if all its input variables have values. Operation execution is code
fragment invocation with values of input and output variables’ values as input and output arguments.

This work was carried out under state contract with ICMMG SB RAS FWNM-2025-0005.
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Operations are executed (maybe in parallel) until all variables marked as demanded are computed. The
computational model can be employed for automatic programs construction. A constructed program
consists of two parts. The first one is a set of code fragments contained in the active knowledge base.
The second one is generated code, which can be called “glue” code. Its main purpose is to invoke
code fragments, pass arguments to them, organize network data transfer and perform other similar
tasks. To provide high efficiency of a constructed program the following two conditions have to be
satisfied. Firstly, “glue” code has to be efficient. Secondly, the code fragments invocation overhead has
to be low enough. For example, if a code fragment is a conventional subroutine, then its invocation
requires control passing (call) and data movement between different memory locations and or registers.
In conventional compilers this overhead can sometimes be reduced using the inlining technique. If a
code fragment is a program written in another language, then corresponding run-time environment
and data conversion has to be made. Notably, the inlining technique not always can be employed by
the compiler because it relies on complex static code analysis. Unless the compiler is able to extract all
necessary information to perform inlining it cannot be applied. An alternative approach is to manually
provide code fragments with necessary metainformation. In such case invocation of the code fragment
can be implemented not as a procedure call, but as an inline code snippet. Code snippet of particular
form is an example of a code fragment with less overhead than a conventional procedure. The active
knowledge concept supports this approach by allowing the inclusion of different code fragment types
with necessary metainformation into active knowledge base. Another advantage the active knowledge
concept suggests is automatic operations aggregation (batching). The idea behind this technique is to
combine a group of similar operations into a single code fragment, thus reducing overhead. A practical
example is aggregating multiple operations for GPU to reduce input/output data transfer between main
memory and GPU memory. Provided necessary metainformation is given, multiple GPU operations
can be aggregated into one GPU call. Such low-level techniques as CUDA Graph [20] can be applied
automatically. Some subject domains have additional possibilities of batching. For example, cuFFT
library provides an API to perform batch processing of multiple fast Fourier transforms more efficiently.
With the active knowledge concept, it is possible to perform such batching automatically. For that an
active knowledge base has to be supplied with corresponding metainformation and batching algorithm
implementation. The system will be able to analyze the computational model graph in order to find
operations to batch. In the paper we concern a practical example — automatic construction of a hybrid
parallel program which uses both CPU and GPU to achieve satisfactory performance in seismic data
processing [12].

Key words: active knowledge concept, computational model, automatic program construction.
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Одной из проблем, возникающих при автоматическом конструировании параллельных про-
грамм, является проблема уменьшения «межмодульного трения» — накладных расходов на
взаимодействие структурных элементов конструируемой программы (вызов подпрограмм, пе-
редачу аргументов, создание необходимого исполнительного окружения и т. п.). Эти наклад-
ные расходы в конструируемой программе существенно влияют на ее эффективность (время
выполнения, расход памяти, нагрузка на сеть и т. п.). Возможности системы автоматического
конструирования программ во многом зависят от модели вычислений, лежащей в основе ее
входного языка. В статье этот вопрос рассматривается с позиций концепции активных зна-
ний — методологии автоматизации конструирования программ в конкретных предметных об-
ластях. В частности, на примере задачи обработки сейсмических данных показывается, как
на основе концепции активных знаний могут быть уменьшены накладные расходы на вызов
модулей и автоматически реализованы такие техники оптимизации конструируемой програм-
мы как «монолитизация» — объединение нескольких структурных элементов программы в
один с соответствующим снижением накладных расходов — за счет наличия формального
описания свойств структурных элементов программы и машинно-ориентированного описания
особенностей предметной области в виде базы активных знаний.

Ключевые слова: параллельное программирование, активные знания, системы автома-
тического конструирования программ, вычислительные модели, сейсмические сигналы.

Введение. Ðàçðàáîòêà ïðîãðàìì � ýòî ñëîæíûé è òðóäîåìêèé ïðîöåññ, òðåáóþùèé
âûñîêîé êâàëèôèêàöèè. Âûñîêàÿ âîñòðåáîâàííîñòü ïðîôåññèè ïðîãðàììèñòà îáóñëàâëè-
âàåò ïîòðåáíîñòü â àâòîìàòèçàöèè ðàçðàáîòêè ïðîãðàìì äëÿ ñíèæåíèÿ òðóäîåìêîñòè è
ñëîæíîñòè ðàçðàáîòêè ïðîãðàìì, ïîâûøåíèÿ èõ êà÷åñòâà è âûñâîáîæäåíèÿ ëþäñêèõ ðå-
ñóðñîâ èç ýòîé ñôåðû.
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Â îáùåé ïîñòàíîâêå çàäà÷à àâòîìàòè÷åñêîãî êîíñòðóèðîâàíèÿ äîñòàòî÷íî õîðîøåé äëÿ
ïðàêòè÷åñêîãî èñïîëüçîâàíèÿ ïðîãðàììû ÿâëÿåòñÿ àëãîðèòìè÷åñêè òðóäíîðåøàåìîé, î
÷åì ñâèäåòåëüñòâóåò îòñóòñòâèå óíèâåðñàëüíîãî ðåøåíèÿ ýòîé ïðîáëåìû è ðàçíîîáðàçèå
ðàçëè÷íûõ ÷àñòíûõ è ýâðèñòè÷åñêèõ ïîäõîäîâ ê àâòîìàòè÷åñêîìó êîíñòðóèðîâàíèþ ïðî-
ãðàìì [1�9]. Â ýòîé ñâÿçè âàæíî èññëåäîâàòü ðàçëè÷íûå ïîäõîäû ê ðåøåíèþ ýòîé ïðîáëå-
ìû.

Äëÿ ïðàêòè÷åñêîãî ïðèìåíåíèÿ ñðåäñòâ àâòîìàòè÷åñêîãî êîíñòðóèðîâàíèÿ ïðîãðàìì
ñóùåñòâåííî, ÷òîáû ïðîãðàììû ñòðîèëèñü íå èç îòäåëüíûõ îïåðàöèé è ïåðåìåííûõ, à ïî
âîçìîæíîñòè èç óæå ñëîæèâøèõñÿ â ðó÷íîì ïðîãðàììèðîâàíèè êðóïíûõ áëîêîâ � ïðî-
ãðàììíûõ ìîäóëåé. Áåç òàêîãî ïåðåèñïîëüçîâàíèÿ ñóùåñòâóþùåãî ïðîãðàììíîãî îáåñïå-
÷åíèÿ (ÏÎ) ñîçäàíèå ïðàêòè÷åñêè ïðèãîäíûõ ïðîãðàìì âîçìîæíî òîëüêî â óçêèõ íèøàõ,
ò. ê. áåç ïåðåèñïîëüçîâàíèÿ ñóùåñòâóþùåãî ÏÎ àëãîðèòìè÷åñêàÿ ñëîæíîñòü çàäà÷è ñóùå-
ñòâåííî âûøå.

Ýòî, â ñâîþ î÷åðåäü, òðåáóåò íåêîòîðîé óíèôèêàöèè ñóùåñòâóþùåãî ïðîãðàììíîãî
îáåñïå÷åíèÿ (ÏÎ), ïðèâåäåíèå åãî ê íåêîòîðîìó ñòàíäàðòíîìó âèäó, ÷òîáû îáåñïå÷èòü åäè-
íîîáðàçíóþ ðàáîòó ñ ÏÎ ñî ñòîðîíû ñèñòåìû àâòîìàòèçàöèè. Íàïðèìåð, âêëþ÷åíèå êîäà
â îáû÷íóþ áèáëèîòåêó ïîäïðîãðàìì òðåáóåò åãî îôîðìëåíèÿ â âèäå ïðîöåäóðû, âêëþ÷å-
íèå êîäà â âèäå ìîäóëÿ ðàñøèðåíèÿ (plugin) òðåáóåò åãî îôîðìëåíèÿ ñ ñîîòâåòñòâóþùèì
èíòåðôåéñîì, è ò. ï. Ïðîãðàììíûå ïàêåòû (deb, rpm), êîíòåéíåðû (docker), îáðàçû âèð-
òóàëüíûõ ìàøèí � ïðèìåðû ðàçëè÷íûõ ìîäóëüíûõ îáîëî÷åê, îáåñïå÷èâàþùèõ ðàçíûå
âîçìîæíîñòè àâòîìàòèçàöèè.

Êàêèì áû íè áûë ñòàíäàðòíûé âèä ìîäóëÿ, ýòî ñîçäàåò ¾ìåæìîäóëüíîå òðåíèå¿ �
íàêëàäíûå ðàñõîäû íà îáðàùåíèå ê ìîäóëþ, ïåðåäà÷ó åìó àðãóìåíòîâ, ñîçäàíèå íåîáõî-
äèìîãî äëÿ íåãî èñïîëíèòåëüíîãî îêðóæåíèÿ è ò. ï. ×åì áîëåå óíèâåðñàëüíà ìîäóëüíàÿ
îáîëî÷êà, òåì âûøå ìåæìîäóëüíîå òðåíèå. Ýòî îáóñëàâëèâàåò òîò ôàêò, ÷òî âìåñòî óíè-
âåðñàëüíûõ èíòåðôåéñîâ ïðîãðàììíûõ ìîäóëåé íà ïðàêòèêå èñïîëüçóþò ÷àñòíûå ìåõà-
íèçìû, îáåñïå÷èâàþùèå, ñ îäíîé ñòîðîíû, ïðèåìëåìóþ äîëþ íàêëàäíûõ ðàñõîäîâ â ñâîèõ
ïðåäìåòíûõ îáëàñòÿõ, íî, ñ äðóãîé ñòîðîíû, îãðàíè÷èâàþùèå îáëàñòü âîçìîæíîãî àâòî-
ìàòè÷åñêîãî ïðèìåíåíèÿ ñîîòâåòñòâóþùåãî ÏÎ.

Ñëîæíîñòè óíèôèêàöèè ïðåäñòàâëåíèÿ ÏÎ äëÿ àâòîìàòèçàöèè ýôôåêòèâíîãî åãî ïå-
ðåèñïîëüçîâàíèÿ äëÿ ðåøåíèÿ íîâûõ çàäà÷ â ïðåäìåòíîé îáëàñòè ïðîèñòåêàþò èç òîãî,
÷òî äîñòèæåíèå ýôôåêòèâíîñè ñóùåñòâåííî çàâèñèò îò îñîáåííîñòåé ýòîé ïðåäìåòíîé îá-
ëàñòè, â ÷àñòíîñòè, ñ òîãî, êàê ïîíèìàåòñÿ ýôôåêòèâíîñòü â äàííîé ïðåäìåòíîé îáëàñòè
è êàêèìè ìåòîäàìè âîçìîæíî åå îáåñïå÷åíèå â ýòîé ïðåäìåòíîé îáëàñòè.

Êîíöåïöèÿ àêòèâíûõ çíàíèé [10] � ýòî ìåòîäîëîãèÿ àâòîìàòèçàöèè êîíñòðóèðîâàíèÿ
ïðîãðàìì, îñíîâàííàÿ íà òåîðèè ñèíòåçà ïàðàëëåëüíûõ ïðîãðàìì è ñèñòåì íà âû÷èñëè-
òåëüíûõ ìîäåëÿõ [11]. Ýòà ìåòîäîëîãèÿ ïðåäëàãàåò ïîäõîä ê àâòîìàòè÷åñêîìó ïîñòðîåíèþ
äîñòàòî÷íî õîðîøèõ äëÿ ïðàêòè÷åñêîãî ïðèìåíåíèÿ ïðîãðàìì â êîíêðåòíîé ïðåäìåòíîé
îáëàñòè íà îñíîâå ïîñòðîåíèÿ áàçû àêòèâíûõ çíàíèé � ÷àñòè÷íîãî ôîðìàëüíîãî îïèñàíèÿ
ïðåäìåòíîé îáëàñòè, íàêîïëåííûõ â íåì ãîòîâûõ ðåøåíèé (ãîòîâîãî ÏÎ) è ñëîæèâøåé-
ñÿ ïðàêòèêè èõ ýôôåêòèâíîãî ïðèìåíåíèÿ. Íàëè÷èå áàçû àêòèâíûõ çíàíèé ïîçâîëÿåò
àâòîìàòè÷åñêè ñòðîèòü ðåøåíèÿ íîâûõ çàäà÷ â ïðåäìåòíîé îáëàñòè çà ñ÷åò òîãî, ÷òî ñó-
ùåñòâåííûå îñîáåííîñòè ýòîé ïðåäìåòíîé îáëàñòè ÿâíî îïèñàíû â áàçå àêòèâíûõ çíàíèé.
Â ÷àñòíîñòè, êîíöåïöèÿ àêòèâíûõ çíàíèé ïîçâîëÿåò îáåñïå÷èâàòü íèçêèé óðîâåíü ìåæ-
ìîäóëüíîãî òðåíèÿ, âïëîòü äî íåñóùåñòâåííîãî. Â ñòàòüå ðàññìàòðèâàåòñÿ ýòîò âîïðîñ íà
ïðèìåðå êîíêðåòíîé çàäà÷è èç ïðåäìåòíîé îáëàñòè ñåéñìè÷åñêîãî ìîíèòîðèíãà [12].
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Äàëüíåéøàÿ ÷àñòü ñòàòüè îðãàíèçîâàíà ñëåäóþùèì îáðàçîì. Â ðàçäåëå 1 ïðåäñòàâëåí
êðàòêèé îáçîð êëþ÷åâûõ ïîäõîäîâ ê ðåøåíèþ ðàññìàòðèâàåìîé ïðîáëåìû, â ðàçäåëå 2
ââîäÿòñÿ íåîáõîäèìûå òåðìèíû è ðàññìàòðèâàåòñÿ ïîñòàíîâêà çàäà÷è, â ðàçäåëå 3 ïðåä-
ñòàâëåíî îïèñàíèå ãåíåðàòîðà ïðîãðàìì, îñíîâàííîãî íà ïðåäëàãàåìîì ïîäõîäå. Â ðàçäåëå
4 ïðåäñòàâëåíû ðåçóëüòàòû ýêñïåðèìåíòàëüíîãî èññëåäîâàíèÿ. Çàâåðøàåò ñòàòüþ çàêëþ-
÷åíèå, ãäå ïîäâîäÿòñÿ èòîãè ðàáîòû.

1. Обзор родственных работ. Ñèñòåìû àâòîìàòè÷åñêîãî êîíñòðóèðîâàíèÿ ïàðàë-
ëåëüíûõ ïðîãðàìì ñòðåìÿòñÿ óïðîñòèòü ðàçðàáîòêó âûñîêîïðîèçâîäèòåëüíûõ ïðèëîæå-
íèé, íî ÷àñòî ñòàëêèâàþòñÿ ñ ïðîáëåìîé íàêëàäíûõ ðàñõîäîâ ìîäóëüíûõ îáîëî÷åê. Ýòè
íàêëàäíûå ðàñõîäû ìîãóò ñóùåñòâåííî ñíèæàòü ýôôåêòèâíîñòü ïàðàëëåëüíûõ ïðîãðàìì,
íèâåëèðóÿ ïðåèìóùåñòâà àâòîìàòèçàöèè. Ïðîâåäåì àíàëèç ñóùåñòâóþùèõ ñèñòåì è ïîä-
õîäîâ ñ ýòîé ïîçèöèè.

Îäíèì èç ïîäõîäîâ ÿâëÿåòñÿ èñïîëüçîâàíèå ïðåäìåòíî-îðèåíòèðîâàííûõ ÿçûêîâ, òà-
êèõ êàê Halide [13]. Ïðåäìåòíî-îðèåíòèðîâàííûå ÿçûêè (DSL) ïîçâîëÿþò îïèñûâàòü íåêî-
òîðûé êëàññ çàäà÷ íà âûñîêîì óðîâíå àáñòðàêöèè. Íî èõ îãðàíè÷åííîñòü ðàìêàìè êîí-
êðåòíîé ïðåäìåòíîé îáëàñòè ìîæåò ïîòðåáîâàòü óñèëèé äëÿ èíòåãðàöèè ñ ñóùåñòâóþùèìè
ïðîãðàììíûìè êîìïîíåíòàìè, ïîðîæäàÿ íàêëàäíûå ðàñõîäû, ñâÿçàííûå ñ ïðåîáðàçîâàíè-
åì äàííûõ è âûçîâàìè áèáëèîòåê.

Äðóãîé ïîäõîä çàêëþ÷àåòñÿ â àâòîìàòè÷åñêîì ðàñïàðàëëåëèâàíèè ñóùåñòâóþùèõ ïî-
ñëåäîâàòåëüíûõ ïðîãðàìì, êàê ýòî ðåàëèçîâàíî â ñèñòåìå PLUTO [14�16]. Ýòà ñèñòåìà
èñïîëüçóåò ïîëèýäðàëüíóþ êîìïèëÿöèþ (Polyhedral Compilation) [17] äëÿ îïòèìèçàöèè è
ðàñïàðàëëåëèâàíèÿ öèêëîâ â C-êîäå. Ýòî ïîçâîëÿåò ïîâòîðíî èñïîëüçîâàòü ñóùåñòâóþ-
ùèé êîä. Íî ýòà ñèñòåìà ÿâëÿåòñÿ óçêîñïåöèàëèçèðîâàííîé è îíà íå âñåãäà îáåñïå÷èâàåò
äîñòàòî÷íóþ ïðîèçâîäèòåëüíîñòü è, ñêîðåå, ìîæåò ðàññìàòðèâàòüñÿ êàê êîìïîíåíò êàêîé-
íèáóäü ñèñòåìû àâòîìàòè÷åñêîãî êîíñòðóèðîâàíèÿ ïàðàëëåëüíûõ ïðîãðàìì. Áîëåå ãèáêèé
ïîäõîä ïðåäëàãàåò ñèñòåìà LuNA [18]. Ýòà ñèñòåìà àâòîìàòè÷åñêè êîíñòðóèðóåò ýôôåê-
òèâíûå ïðîãðàììû â êîíêðåòíîé ïðåäìåòíîé îáëàñòè, èñïîëüçóÿ ôîðìàëüíîå îïèñàíèå
îáëàñòè, íàêîïëåííûå ðåøåíèÿ è ïðàêòèêó èõ ïðèìåíåíèÿ. Íî íàëè÷èå èñïîëíèòåëüíîé
ñèñòåìû ìîæåò âíîñèòü ñóùåñòâåííûå íàêëàäíûå ðàñõîäû. Òàêàÿ æå ïðîáëåìà ñóùåñòâóåò
ó ñèñòåìû Charm++ [1�2] è åå ìîäåëè íà îñíîâå ¾÷àðîâ¿.

Òàêèå ïîäõîäû, êàê OpenCL [3] è Coarray Fortran [4�5], ïðåäîñòàâëÿþò ðàçðàáîò÷èêàì
áîëåå íèçêîóðîâíåâûå èíñòðóìåíòû äëÿ ïàðàëëåëüíîãî ïðîãðàììèðîâàíèÿ, íî òðåáóþò
âìåøàòåëüñòâà ñïåöèàëèñòà. Ïðè ýòîì äàæå ó òàêèõ ïîäõîäîâ âîçíèêàþò íàêëàäíûå ðàñ-
õîäû, íàïðèìåð ó OpenCL èç-çà JIT-êîìïèëÿöèè êîäà äëÿ ñïåöèàëèçèðîâàííûõ óñòðîéñòâ
÷àñòî ìîãóò âîçíèêàòü íàêëàäíûå ðàñõîäû âî âðåìÿ âûïîëíåíèÿ ïðîãðàììû. Ïðèìåðíî
òàêæå îáñòîÿò äåëà ó DVM [6�8].

Óìåíüøåíèå íàêëàäíûõ ðàñõîäîâ ìîäóëüíûõ îáîëî÷åê ÿâëÿåòñÿ îäíèì èç êëþ÷åâûõ
âîïðîñîâ äëÿ äîñòèæåíèÿ âûñîêîé ïðîèçâîäèòåëüíîñòè, è ðàçëè÷íûå ñèñòåìû àâòîìàòè÷å-
ñêîãî êîíñòðóèðîâàíèÿ ïàðàëëåëüíûõ ïðîãðàìì ïðåäëàãàþò ðàçíûå ïîäõîäû ê ðåøåíèþ
ýòîé ïðîáëåìû. Íî íà äàííûé ìîìåíò ñóùåñòâóþùèå ðåøåíèÿ íå çàêðûâàþò âîïðîñà, ïî-
ýòîìó àêòóàëüíî äàëüíåéøåå èññëåäîâàíèå ïîäõîäîâ ê óìåíüøåíèþ íàêëàäíûõ ðàñõîäîâ
â ðàçëè÷íûõ ïðåäìåòíûõ îáëàñòÿõ.

2. Постановка задачи. Â êîíöåïöèè àêòèâíûõ çíàíèé [10], â ñîîòâåòñòâèè ñ åå áàçî-
âîé òåîðèåé [11] ïðîöåññ àâòîìàòè÷åñêîãî êîíñòðóèðîâàíèÿ ïðîãðàììû ñòðîèòñÿ íà îñíîâå
áàç àêòèâíûõ çíàíèé [9]. Êëþ÷åâûì ýëåìåíòîì áàçû àêòèâíûõ çíàíèé ÿâëÿåòñÿ âû÷èñ-
ëèòåëüíàÿ ìîäåëü (ÂÌ) [11], êîòîðóþ â ñòàòüå ìû óïðîùåííî áóäåì ðàññìàòðèâàòü êàê
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äâóäîëüíûé îðãðàô, âåðøèíàìè êîòîðîãî ÿâëÿþòñÿ îïåðàöèè è ïåðåìåííûå. Ïåðåìåííûå
îïèñûâàþò âåëè÷èíû ïðåäìåòíîé îáëàñòè è ìîãóò èìåòü çíà÷åíèÿ ïðîèçâîëüíûõ òèïîâ
äàííûõ. Îïåðàöèè îáîçíà÷àþò âîçìîæíîñòü âû÷èñëÿòü çíà÷åíèÿ îäíèõ ïåðåìåííûõ èç
äðóãèõ (êàêèå èç êàêèõ � îáîçíà÷àåòñÿ âõîäÿùèìè â îïåðàöèþ è èñõîäÿùèìè èç íåå
äóãàìè ñîîòâåòñòâåííî, è íàçûâàþòñÿ âõîäíûìè è âûõîäíûìè ïåðåìåííûìè îïåðàöèè ñî-
îòâåòñòâåííî). Îáåñïå÷èâàåòñÿ ýòà âîçìîæíîñòü âû÷èñëÿòü ïðåäîñòàâëåíèåì ôðàãìåíòà
êîäà (ÔÊ) � ïðåäñòàâëåííîãî â çàðàíåå îãîâîðåííîé ïîäõîäÿùåé ôîðìå ïðîãðàììíîãî
ìîäóëÿ, íàïðèìåð ïîñëåäîâàòåëüíîé ïðîöåäóðû ñ èçâåñòíîé ñèãíàòóðîé. ÂÌ, ìíîæåñòâî
ÔÊ, à òàêæå íåêîòîðûå äðóãèå òåõíè÷åñêèå ýëåìåíòû è ñîñòàâëÿþò áàçó àêòèâíûõ çíàíèé.

Ïðîöåññ êîíñòðóèðîâàíèÿ ïðîãðàììû [19] íà îñíîâå áàçû àêòèâíûõ çíàíèé íà÷èíàåòñÿ
ñ òîãî, ÷òî âî ìíîæåñòâå ïåðåìåííûõ ÂÌ âûäåëÿåòñÿ äâà ïîäìíîæåñòâà � V è W, íàçû-
âàåìûå âõîäíûìè è âûõîäíûìè ïåðåìåííûìè ñîîòâåòñòâåííî. Çíà÷åíèÿ ïåðåìåííûõ èç V
ñ÷èòàþòñÿ èçâåñòíûìè, à çíà÷åíèÿ ïåðåìåííûõ èç W òðåáóåòñÿ âû÷èñëèòü. Â ýòîì ñëó÷àå
ãîâîðÿò, ÷òî íà ÂÌ ïîñòàâëåíà VW-çàäà÷à (èëè ïðîñòî çàäà÷à). Çàòåì îñóùåñòâëÿåòñÿ
ïëàíèðîâàíèå èëè âûâîä àëãîðèòìà � âûäåëÿåòñÿ ïîäìíîæåñòâî îïåðàöèé ÂÌ, óïîðÿäî-
÷åííîå èñïîëíåíèå êîòîðûõ (ò. å. çàïóñê ÔÊ ñ ñîîòâåòñòâóþùèìè àðãóìåíòàìè) ïðèâîäèò
ê âû÷èñëåíèþ çíà÷åíèé ïåðåìåííûõ èç W. Ýòî ïîäìíîæåñòâî îïåðàöèé çàäàåò àëãîðèòì
ðåøåíèÿ çàäà÷è.

Äàëåå êîíñòðóèðóåòñÿ ïðîãðàììà. Èç ðàçëè÷íûõ âîçìîæíûõ âàðèàíòîâ [19] ìû ðàñ-
ñìîòðèì îäèí � ãåíåðèðóåòñÿ ëèñòèíã îáû÷íîé ïîñëåäîâàòåëüíîé èëè ïàðàëëåëüíîé ïðî-
ãðàììû, ñîäåðæàíèå êîòîðîé ñâîäèòñÿ ê óïîðÿäî÷åííîìó çàïóñêó ÔÊ â ñîîòâåòñòâèè ñ
âûâåäåííûì ðàíåå àëãîðèòìîì ðåøåíèÿ çàäà÷è. Ïîìèìî ñîáñòâåííî çàïóñêà, ÔÊ ñãåíå-
ðèðîâàííàÿ ïðîãðàììà ìîæåò ñîäåðæàòü êîä, îáåñïå÷èâàþùèé ïåðåñûëêó çíà÷åíèé ïåðå-
ìåííûõ ïî ñåòè, óïðàâëåíèå ïàìÿòüþ, ñèíõðîíèçàöèþ äîñòóïà ê äàííûì, çàãðóçêó èçâíå
çíà÷åíèé âõîäíûõ ïåðåìåííûõ è âûäà÷ó âîâíå çíà÷åíèé âû÷èñëåííûõ âûõîäíûõ çíà÷åíèé
ïåðåìåííûõ, à òàêæå äðóãèå âñïîìîãàòåëüíûå ýëåìåíòû.

Òàêèì îáðàçîì, ìû ðàññìîòðåëè, êàê â ñâîåé îñíîâå ðàññìàòðèâàåòñÿ ïðîöåññ êîíñòðó-
èðîâàíèÿ ïðîãðàììû â êîíöåïöèè àêòèâíûõ çíàíèé. Â ÷àñòíîñòè, âèäíî, ÷òî ¾ïîëåçíûå¿
âû÷èñëåíèÿ, ðàäè êîòîðûõ è ñóùåñòâóåò ïðîãðàììà, íàõîäÿòñÿ èñêëþ÷èòåëüíî âíóòðè
ÔÊ, à ãåíåðèðóåìûé êîä ÿâëÿåòñÿ ¾ñêëåèâàþùèì ñëîåì¿, îáåñïå÷èâàþùèì èõ çàïóñê è
ïîäñòàíîâêó àðãóìåíòîâ. Îáåñïå÷åíèå âûñîêîé ïðîèçâîäèòåëüíîñòè ïðîãðàììû ïî áîëü-
øîìó ñ÷åòó, îïðåäåëÿåòñÿ ñëåäóþùèìè ôàêòîðàìè: íàñêîëüêî ìàëî ðåñóðñîâ óõîäèò íà
ðàáîòó ¾ñêëåèâàþùåãî ñëîÿ¿; íàñêîëüêî ýôôåêòèâíî çàëîæåííîå â íåãî óïðàâëåíèå è ðàñ-
ïðåäåëåíèå ðåñóðñîâ; íàñêîëüêî ¾òîíêè îáîëî÷êè¿ ÔÊ. Ïåðâûå äâà ôàêòîðà âûõîäÿò çà
ðàìêè íàñòîÿùåé ñòàòüè. Çäåñü æå ðàññìîòðèì òðåòèé ôàêòîð.

Åñëè ÔÊ � ýòî ïîñëåäîâàòåëüíàÿ ïðîöåäóðà, òî åå âûçîâ ñàì ïî ñåáå òðåáóåò íàêëàä-
íûõ ðàñõîäîâ, òàêèõ êàê ïåðåìåùåíèå äàííûõ (ðåãèñòðû, ñòåê) äëÿ ïåðåäà÷è àðãóìåíòîâ.
Äëÿ ìàëåíüêèõ ïî îáúåìó âû÷èñëåíèé ÔÊ äîëÿ íàêëàäíûõ ðàñõîäîâ ìîæåò îêàçàòüñÿ
íåöåëåñîîáðàçíî âûñîêîé. Îò÷àñòè ýòî ìîæåò áûòü ïðåîäîëåíî ìåõàíèçìîì âñòðàèâàíèÿ
êîäà âìåñòî âûçîâà ïðîöåäóðû (inline). Åñëè æå ÔÊ � ýòî ïðîãðàììíûé ìîäóëü íà äðó-
ãîì ÿçûêå ïðîãðàììèðîâàíèÿ, òî íàêëàäíûå ðàñõîäû ìîãóò ìíîãîêðàòíî âîçðàñòàòü. È
åñëè ÷àñòü èç íèõ îáúåêòèâíî íåîáõîäèìû (íàïðèìåð, ïåðåäà÷à äàííûõ èç êîíòåêñòà îä-
íîãî ÿçûêà â êîíòåêñò äðóãîãî), òî ÷àñòü âîçíèêàåò âñëåäñòâèå òîãî, ÷òî âíåøíèé ìîäóëü
ñòàíîâèòñÿ ¾÷åðíûì ÿùèêîì¿, î êîòîðîì ñèñòåìà êîíñòðóèðîâàíèÿ ïðîãðàìì íå îáëàäà-
åò äîñòàòî÷íîé èíôîðìàöèåé è, ñîîòâåòñòâåííî, ðàáîòó ñ êîòîðûì íå ìîæåò ýôôåêòèâíî
îïòèìèçèðîâàòü.
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Íàïðèìåð, åñëè ñèñòåìà ìîæåò ðàáîòàòü òîëüêî ñ ÔÊ âèäà ¾ïîñëåäîâàòåëüíàÿ ïðîöåäó-
ðà ñ èçâåñòíîé ñèãíàòóðîé¿, òî çàïóñê êîäà â èíîì êîíòåêñòå (ñêàæåì, íà GPU) âîçìîæåí
ïóòåì ñîçäàíèÿ ¾îáåðòî÷íîãî¿ ÔÊ (wrapper), êîòîðûé ñîäåðæèò ðàáîòó ñ GPU âíóòðè, î
÷åì ñèñòåìà íå çíàåò. Íî ýòî òðåáóåò â êàæäîì òàêîì ÔÊ ïåðåìåùàòü äàííûå èç ïàìÿòè
CPU â ïàìÿòü GPU è îáðàòíî, èíà÷å ñãåíåðèðîâàííûé êîä íå áóäåò ðàáîòàòü ïðàâèëüíî.
Åñëè æå ââåñòè â ñèñòåìó ïîääåðæêó íîâîãî âèäà ÔÊ � ÔÊ äëÿ GPU, òî ñèñòåìà ñìîæåò
ñàìà â ¾ñêëåèâàþùåì ñëîå¿ ñãåíåðèðîâàòü êîððåêòíóþ ðàáîòó ñ äàííûìè è îïòèìèçèðî-
âàòü èõ ïåðåìåùåíèå (íàïðèìåð, îñòàâëÿòü äàííûå â ïàìÿòè GPU, åñëè âñêîðå îíè áóäóò
îáðàáîòàíû ÔÊ íà GPU).

Ïðèíöèïèàëüíî, ÷òî íè îäèí âèä ÔÊ íå ìîæåò áûòü óíèâåðñàëüíûì, ò. ê. ýòî îçíà÷àëî
áû ïðèâåäåíèå âñåõ ïðîãðàììíûõ ìîäóëåé ê îäíîìó âèäó, ñîçäàíèå äëÿ âñåõ ïðîãðàìì-
íûõ ìîäóëåé óíèâåðñàëüíîé îáåðòêè. Ââèäó ðàçíîîáðàçèÿ ïðîãðàììíûõ ìîäóëåé óíèâåð-
ñàëüíàÿ îáåðòêà èìåëà áû äëÿ ïîäàâëÿþùåãî áîëüøèíñòâà ìîäóëåé (îñîáåííî ìàëûõ ïî
îáúåìó âû÷èñëåíèé) ÷ðåçìåðíî áîëüøèå íàêëàäíûå ðàñõîäû íà ïåðåäà÷ó àðãóìåíòîâ, ñî-
çäàíèå íåîáõîäèìîãî èñïîëíèòåëüíîãî îêðóæåíèÿ è ò. ï. (äëÿ ïðèìåðà ìîæíî ðàññìîòðåòü
¾óíèâåðñàëüíûé¿ ôîðìàò, òàêîé êàê docker-êîíòåéíåð èëè ïðåäóñòàíîâëåííóþ âèðòóàëü-
íóþ ìàøèíó). Êîíöåïöèÿ àêòèâíûõ çíàíèé æå ïðåäïîëàãàåò íàëè÷èå ðàçëè÷íûõ âèäîâ
ÔÊ íà ðàçíûå ñëó÷àè æèçíè � ïðîöåäóðû, ñíèïïåòû, êîìàíäû êîìàíäíîé ñòðîêè è ò. ï.,
ïðè÷åì íîâûé âèä ÔÊ ìîæåò áûòü äîáàâëåí â ñèñòåìó ÷åðåç ââåäåíèå ñîîòâåòñòâóþùå-
ãî ìîäóëÿ ðàñøèðåíèÿ â áàçó àêòèâíûõ çíàíèé. Òàêèì îáðàçîì âêëþ÷åíèå ïðîãðàììíûõ
ìîäóëåé â áàçó àêòèâíûõ çíàíèé â ëþáîé ïðåäìåòíîé îáëàñòè ñòàíîâèòñÿ ïðàêòè÷íûì, à
êîíêðåòíûé íàáîð èñïîëüçóåìûõ âèäîâ ÔÊ çàâèñèò îò ïðåäìåòíîé îáëàñòè.

Îòìåòèì òàêæå, ÷òî îäíîé èç ïîëåçíûõ ôóíêöèé ìîäóëüíîñòè ÿâëÿåòñÿ èíêàïñóëÿ-
öèÿ ìîäóëåé, ÷òî îáåñïå÷èâàåò ïîëüçîâàòåëÿì ìîäóëÿ (â ò. ÷. ñèñòåìå êîíñòðóèðîâàíèÿ)
íå çíàòü ìíîãèå äåòàëè âíóòðåííåãî óñòðîéñòâà ìîäóëÿ. Òàê, íàïðèìåð, ïðîöåäóðà êàê
ìîäóëüíàÿ îáîëî÷êà ïîçâîëÿåò íå çàáîòèòüñÿ î òîì, êàêèå ëîêàëüíûå ïåðåìåííûå èñïîëü-
çóåò ïðîöåäóðà. Ñíÿòèå ïðîöåäóðíîé îáîëî÷êè ñ êîäà (ñ öåëüþ óìåíüøåíèÿ íàêëàäíûõ
ðàñõîäîâ) è âñòðàèâàíèå ñàìîãî êîäà â ëèñòèíã ïðîãðàììû îçíà÷àåò, ÷òî íåîáõîäèìî èñ-
êëþ÷èòü âîçìîæíîñòü êîíôëèêòà èìåí ïåðåìåííûõ âî âñòðàèâàåìîì è îáúåìëþùåì êî-
äå. Ýòîò ïðèìåð èëëþñòðèðóåò èäåþ î òîì, ÷òî ÷åì ¾òîíüøå¿ ìîäóëüíàÿ îáîëî÷êà, òåì
áîëüøå èíôîðìàöèè äîëæíà èìåòü ñèñòåìà î ÔÊ äëÿ êîððåêòíîãî è ýôôåêòèâíîãî åãî
èñïîëüçîâàíèÿ, íî ýòî äàåò âîçìîæíîñòü ñíèæàòü ìåæìîäóëüíîå òðåíèå.

Âåðíåìñÿ ê ïðèìåðó ñ GPU. Íà îñíîâå êîíöåïöèè àêòèâíûõ çíàíèé âîçìîæíû è áî-
ëåå ïðîäâèíóòûå òåõíèêè îïòèìèçàöèè, òàêèå êàê èñïîëüçîâàíèå CUDA Graph [20] èëè
cuFFTplan [21]. Ïåðâàÿ òåõíèêà ïîçâîëÿåò ôîðìèðîâàòü ïàêåò çàäà÷ äëÿ îáðàáîòêè íà
âèäåîêàðòå áåç íåîáõîäèìîñòè ïðîìåæóòî÷íîé ñèíõðîíèçàöèè ñ CPU, à âòîðàÿ ðåàëèçóåò
ïàêåòíóþ îáðàáîòêó íàáîðà çàäà÷ ïî âû÷èñëåíèþ áûñòðîãî ïðåîáðàçîâàíèÿ Ôóðüå (ÁÏÔ)
â áèáëèîòåêå cuFFT.

Ýòè è äðóãèå òåõíèêè îïòèìèçàöèè èñïîëíåíèÿ ìíîæåñòâà îïåðàöèé íåïîñðåäñòâåííî
îòíîñÿòñÿ ê òðåòüåìó ðàññìàòðèâàåìîìó ôàêòîðó � ¾òîëùèíå îáîëî÷åê¿ ÔÊ. Îáû÷íî
ïðèìåíåíèå ýòèõ òåõíèê âîçìîæíî òîëüêî âðó÷íóþ, ò. ê. êîððåêòíîå èõ ïðèìåíåíèå òðå-
áóåò èíôîðìàöèè, êîòîðóþ ïðàêòè÷åñêè íåâîçìîæíî èçâëåêàòü àâòîìàòè÷åñêè èç òðàäè-
öèîííîãî êîäà, è ýòîé èíôîðìàöèåé îáëàäàåò òîëüêî ïðîãðàììèñò. Â êîíöåïöèè àêòèâíûõ
çíàíèé ýòà èíôîðìàöèÿ ìîæåò áûòü íåïîñðåäñòâåííî âêëþ÷åíà â áàçó àêòèâíûõ çíàíèé
âðó÷íóþ, ÷òî ïîçâîëÿåò ïðèìåíÿòü ïîäîáíûå òåõíèêè àâòîìàòè÷åñêè.
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Îòìåòèì, ÷òî òàêàÿ îïòèìèçàöèÿ êàê îáúåäèíåíèå ìíîæåñòâà îïåðàöèé ÁÏÔ â îä-
íó ïàêåòíóþ îïåðàöèþ ÿâëÿåòñÿ ïðèìåðîì îïòèìèçàöèè, ñïåöèôè÷íîé äëÿ êîíêðåòíîé
ïðåäìåòíîé îáëàñòè, è íå èìååò øèðîêîãî ïðèìåíåíèÿ â ïðîãðàììàõ îáùåãî íàçíà÷åíèÿ.
Äðóãèå ïîäîáíûå òåõíèêè îïòèìèçàöèè òàêæå ìîãóò áûòü óçêîñïåöèàëèçèðîâàííûìè. Íî
äëÿ êîíöåïöèè àêòèâíûõ çíàíèé ïîääåðæêà òàêèõ îïòèìèçàöèé íå ÿâëÿåòñÿ ïðîáëåìîé,
â îòëè÷èå îò ñèñòåì îáùåãî íàçíà÷åíèÿ, ò. ê. áàçà àêòèâíûõ çíàíèé êàê ðàç è ÿâëÿåò-
ñÿ ÷àñòè÷íûì ôîðìàëüíûì îïèñàíèåì êîíêðåòíîé ïðåäìåòíîé îáëàñòè, ãäå åñòü âîçìîæ-
íîñòü òàêèå óçêîñïåöèàëèçèðîâàííûå îïòèìèçàöèè çàêëàäûâàòü. Àäåêâàòíîñòü òàêèõ òåõ-
íèê êîíòðîëèðóåò èíæåíåð çíàíèé, ñîñòàâëÿþùèé áàçó àêòèâíûõ çíàíèé è ÿâëÿþùèéñÿ
ñïåöèàëèñòîì êàê â ïðåäìåòíîé îáëàñòè, òàê è â àâòîìàòèçàöèè êîíñòðóèðîâàíèÿ ïðî-
ãðàìì.

Â ÷àñòíîñòè, àâòîìàòè÷åñêàÿ àãðåãàöèÿ ìíîæåñòâà îïåðàöèé ÁÔÏ â îäíó ïàêåòíóþ
îïåðàöèþ ìîæåò áûòü ðåàëèçîâàíà êàê ïðîìåæóòî÷íûé ýòàï êîíñòðóèðîâàíèÿ ïðîãðàì-
ìû, ïðåäøåñòâóþùèé âûâîäó àëãîðèòìà. Ñóòü åãî ñâîäèòñÿ ê òîìó, ÷òî ñèñòåìà ðàññìàò-
ðèâàåò ãðàô ÂÌ, âûÿâëÿåò ìíîæåñòâî îïåðàöèé, ñâÿçàííûõ ñ êîíêðåòíûì ÔÊ � ÁÏÔ
íà GPU, àíàëèçèðóåò èõ àðãóìåíòû (ïåðåìåííûå) íà âîçìîæíîñòü óïàêîâêè, è â ñëó÷àå
òàêîé âîçìîæíîñòè äîáàâëÿåò â ÂÌ íîâóþ îïåðàöèþ, âõîäíûå è âûõîäíûå ïåðåìåííûå êî-
òîðîé ÿâëÿþòñÿ îáúåäèíåíèåì âõîäíûõ è âûõîäíûõ ïåðåìåííûõ àãðåãèðóåìûõ îïåðàöèé
ñîîòâåòñòâåííî, à ÔÊ äëÿ íîâîé îïåðàöèè ÿâëÿåòñÿ ÔÊ äëÿ GPU íà îñíîâå ôîðìèðîâàíèÿ
ñòðóêòóðû cuFFTPlan áèáëèîòåêè cuFFT è ïàêåòíîé îáðàáîòêè íàáîðà ÁÏÔ. Ïîääåðæêà
òàêèõ ñïîñîáîâ îïòèìèçàöèè êîíñòðóèðóåìûõ ïðîãðàìì â êîíêðåòíûõ ïðåäìåòíûõ îáëà-
ñòÿõ ðåàëèçóåòñÿ ñ ïîìîùüþ âêëþ÷åíèÿ â áàçó àêòèâíûõ çíàíèé ìîäóëåé ðàñøèðåíèÿ,
îñóùåñòâëÿþùèõ ñîîòâåòñòâóþùåå ïðåîáðàçîâàíèå ãðàôà áóäóùåé ïðîãðàììû âî âíóò-
ðåííåì ïðåäñòàâëåíèè. Ïðè ðàáîòå ñ ñîîòâåòñòâóþùåé áàçîé àêòèâíûõ çíàíèé ñèñòåìà
ïðîñìàòðèâàåò ìîäóëè ðàñøèðåíèÿ è ïûòàåòñÿ èõ ïðèìåíèòü ïðè êîíñòðóèðîâàíèè ïðî-
ãðàìì.

3. Описание и алгоритм генератора параллельных программ. Â ðàçäåëå èç-
ëàãàåòñÿ, êàê îïèñàííûå âûøå èäåè ðåàëèçîâàíû â êîíêðåòíîì ïðîãðàììíîì ñðåäñòâå �
ãåíåðàòîðå ïàðàëëåëüíûõ ïðîãðàìì. Ãåíåðàòîð ïðåäíàçíà÷åí äëÿ ïðåîáðàçîâàíèÿ VW-
ïëàíà â èñïîëíÿåìûé êîä. Èíòåðôåéñ ãåíåðàòîðà ïðèíèìàåò íà âõîä îïèñàíèå VW-ïëàíà,
ïðåäñòàâëåííîãî â âèäå JSON. Ýòîò JSON ñîäåðæèò òàêæå è îïèñàíèå ôðàãìåíòîâ êîäà
îïåðàöèé. Ôðàãìåíòû êîäà â ãåíåðàòîðå ïðåäñòàâëåíû ïðîöåäóðàìè ñ ñèãíàòóðîé îïðåäå-
ëåííîãî âèäà. Ñîîòâåòñòâåííî, ñãåíåðèðîâàííàÿ ïðîãðàììà áóäåò ñîäåðæàòü âûçîâû ýòèõ
ïðîöåäóð. Ýòè âûçîâû ïðîöåäóð ñîîòâåòñòâóþò îïåðàöèÿì.

Äëÿ ãåíåðàöèè ïðîãðàììû íåîáõîäèìî âûïîëíèòü ñëåäóþùèå øàãè: îïðåäåëåíèå ïî-
ðÿäêà âûïîëíåíèÿ îïåðàöèé, ðàñïðåäåëåíèå îïåðàöèé ïî âû÷èñëèòåëüíûì óçëàì ìóëüòè-
êîìïüþòåðà è îòîáðàæåíèå ïåðåìåííûõ íà ïàìÿòü.

Ïîðÿäîê âûïîëíåíèÿ îïåðàöèé îïðåäåëÿåòñÿ íà îñíîâå çàâèñèìîñòåé ìåæäó ïåðåìåí-
íûìè, îïèñàííûõ â VW-ïëàíå. Ïîäðîáíîñòè èçëîæåíû â ëèñòèíãå è äàëåå â îïèñàíèè
ðàáîòû ãåíåðàòîðà. Ðàñïðåäåëåíèå îïåðàöèé ïî óçëàì � ýòî îòäåëüíàÿ ñëîæíàÿ íàó÷íàÿ
çàäà÷à, êîòîðàÿ â ðàáîòå íå ðàññìàòðèâàåòñÿ. Îáû÷íî äàííóþ çàäà÷ó ðåøàåò ïëàíèðîâ-
ùèê, êîòîðûé ìîæåò áûòü îòäåëüíûì êîìïîíåíòîì, ïðåäîñòàâëÿþùèì ðàñïðåäåëåíèå îïå-
ðàöèé ãåíåðàòîðó ïàðàëëåëüíûõ ïðîãðàìì. Ïîýòîìó ðàñïðåäåëåíèå ïîäàåòñÿ íà âõîä ãå-
íåðàòîðó, èëè, åñëè åãî íåò, ïðîèñõîäèò àâòîìàòè÷åñêîå ðàñïðåäåëåíèå, êîòîðîå ñòðåìèòñÿ
ðàâíîìåðíî ðàñïðåäåëèòü íàãðóçêó ìåæäó óçëàìè, óìåíüøàÿ âðåìÿ ïðîñòîÿ ïðîöåññîðîâ.



В.Э. Малышкин, В.А. Перепелкин, Ю.Ю. Нуштаев 43

Рис. 1. Изображено послойное представление программы. По вертикали — доступные узлы (0, 1, 2 . . . ),

по горизонтали — порядок выполнения слоев, который выстраивается во время конструирования

программы. Схематично изображены передачи данных между подслоями

Ïðîöåññ ãåíåðàöèè êîäà ïðîõîäèò â äâà ýòàïà. Ïåðâûé ýòàï � ïðåîáðàçîâàíèå VW-
ïëàíà â ïîñëîéíîå ïðåäñòàâëåíèå. Ñõåìàòè÷íî äàííîå ïðåäñòàâëåíèå ìîæíî íàáëþäàòü
íà ðèñ. 1. Ñëîé â äàííîì ñëó÷àå � ýòî ìíîæåñòâî íåçàâèñèìûõ îïåðàöèé, êîòîðûå ìîãóò
áûòü âûïîëíåíû ïàðàëëåëüíî. Ïîäñëîé � ìíîæåñòâî îïåðàöèé, ïðèíàäëåæàùèõ îäíîìó
ñëîþ è íàçíà÷åííûå íà îäèí âû÷èñëèòåëüíûé óçåë. Òî åñòü, ñëîé ïðåäñòàâëÿåò ñîáîé
ìíîæåñòâî ïîäñëîåâ îïåðàöèé, êîòîðûå íå ïåðåñåêàþòñÿ.

Ïðåîáðàçîâàíèå VW-ïëàíà â ïîñëîéíîå ïðåäñòàâëåíèå âûïîëíÿåòñÿ èòåðàòèâíî. Íà
êàæäîé èòåðàöèè ïðîèñõîäèò ïîèñê âñåõ îïåðàöèé, ó êîòîðûõ âñå çàâèñèìîñòè îò ïåðåìåí-
íûõ ðàçðåøåíû. Òî åñòü âõîäíûå ïåðåìåííûå îïåðàöèè � âûõîäíûå ïåðåìåííûå îïåðàöèé
íà ïðåäûäóùèõ ñëîÿõ. Äëÿ ïåðâîé èòåðàöèè, íå èìåþùèìè çàâèñèìîñòåé áóäóò ïåðåìåí-
íûå, êîòîðûå èäóò íà âõîä ãåíåðèðóåìîé ïðîãðàììå. Çàòåì äëÿ êàæäîé ïåðåìåííîé â
íàéäåííûõ îïåðàöèÿõ âûïîëíÿåòñÿ ïðîâåðêà íà ñîîòâåòñòâèå óçëà. Åñëè óçåë, íà êîòîðîì
íàõîäèòñÿ ïåðåìåííàÿ, íå ñîîòâåòñòâóåò óçëó, íà êîòîðîì äîëæíà âûïîëíÿòüñÿ îïåðàöèÿ,
ïðîèñõîäèò âñòàâêà îïåðàöèè ïåðåñûëêè äàííûõ ìåæäó ïîäñëîÿìè. Äëÿ ïåðåñûëêè äàí-
íûõ èñïîëüçóåòñÿ àñèíõðîííûé ìåõàíèçì. Íàõîäèòñÿ áëèæàéøèé ñôîðìèðîâàííûé ïîä-
ñëîé, â êîòîðîì ïåðåìåííàÿ íå èìååò çàâèñèìîñòè îò îïåðàöèé, è äîáàâëÿþòñÿ îïåðàöèè
àñèíõðîííîé ïåðåñûëêè. Â ïîäñëîå, ãäå áóäåò âûïîëíÿòüñÿ îïåðàöèÿ, äîáàâëÿåòñÿ îïå-
ðàöèÿ àñèíõðîííîãî ïðèåìà ïåðåìåííîé. Èç íàéäåííûõ îïåðàöèé ôîðìèðóåòñÿ ïîäñëîé,
ñîîòâåòñòâóþùèé óçëó, íà êîòîðîì âûïîëíÿþòñÿ îïåðàöèè. Ïîñëå ïîìåùåíèÿ îïåðàöèé â
ïîäñëîé, âñå âûõîäíûå äàííûå ïîìå÷àþòñÿ êàê íå èìåþùèå çàâèñèìîñòè.

Листинг 1. Ñîçäàíèå ñëîåâ âû÷èñëåíèé.

1: subroutine create_layers
2: input:
3: ranks ⊆ Z // Ìíîæåñòâî äîñòóïíûõ ðàíãîâ óçëîâ
4: 𝑋: set // Ìíîæåñòâî ïåðåìåííûõ
5: 𝐹 : set // Ìíîæåñòâî îïåðàöèé
6: 𝑇 : set // Ìíîæåñòâî òåãîâ (èäåíòèôèêàòîðîâ ñîîáùåíèé)
7: rank: 𝐹 → ranks // Ôóíêöèÿ îòîáðàæàþùàÿ îïåðàöèþ íà óçåë
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8: input_vars: 𝐹 → 𝒫(𝑋) // Ôóíêöèÿ îòîáðàæàþùàÿ îïåðàöèþ íà ìíîæåñòâî âõîä-
íûõ ïåðåìåííûõ îïåðàöèè

9: output_vars: 𝐹 → 𝒫(𝑋) // Ôóíêöèÿ îòîáðàæàþùàÿ îïåðàöèþ íà ìíîæåñòâî
âûõîäíûõ ïåðåìåííûõ îïåðàöèè

10: output:
11: layers: seq(map (ranks ⇒ sub_layer)) // Ïîñëåäîâàòåëüíîñòü ñëîåâ, ðàçáèòûõ ïî

ðàíãàì
12: where:
13: sub_layer is { // ñòðóêòóðà äàííûõ, ñîäåðæàùàÿ èìåíîâàííûå ïîëÿ
14: operations ⊆ 𝒫(𝐹 ), // Îïåðàöèè ïîäñëîÿ
15: message_sends ⊆ (ranks×𝑋 × 𝑇 ), // Ïåðåäà÷è ñîîáùåíèé äëÿ êîíêðåòíîãî óçëà
16: message_receives ⊆ (ranks×𝑋 × 𝑇 ) // Ïðèåìû ñîîáùåíèé äëÿ êîíêðåòíîãî óçëà
17: }
18: local:
19: computed := ∅
20: var_ranks: map (𝑋 ⇒ 𝒫(ranks)); // Ðàíãè, íà êîòîðûõ äîñòóïíà ïåðåìåííàÿ íà

äàííîé èòåðàöèè
21: F_local_iter: map (ranks ⇒ 𝒫(𝐹 )); // Ëîêàëüíûå îïåðàöèè äëÿ êàæäîãî ðàíãà
22: R_local_iter:map (ranks ⇒ 𝒫((ranks×𝑋×𝑇 ))); // Ëîêàëüíûå ñîîáùåíèÿ ïðèåìà

äëÿ êàæäîãî ðàíãà
23: layers := [] // Èíèöèàëèçàöèÿ ïîñëåäîâàòåëüíîñòè ñëîåâ ïóñòîé ïîñëåäîâàòåëüíî-

ñòüþ
24: initialize_local_variables(var_ranks, F_local_iter, R_local_iter, X, ranks)
25: // Èíèöèàëèçèðóåò var_ranks, F_local_iter è R_local_iter.
26: // var_ranks óêàçûâàåò, íà êàêèõ ðàíãàõ äîñòóïíà êàæäàÿ ïåðåìåííàÿ (èçíà÷àëüíî

íè íà êàêèõ).
27: // Îñíîâíîé öèêë ïîñòðîåíèÿ ñëîåâ
28: while 𝐹 ̸= ∅ do
29: // Íàõîäèì ãîòîâûå îïåðàöèè: òå, äëÿ êîòîðûõ âñå âõîäíûå ïåðåìåííûå âû÷èñëåíû
30: ready_ops := {op ∈ 𝐹 | ∀𝑥 ∈ input_vars(op), 𝑥 ∈ computed}
31: // Åñëè íå óäàëîñü íàéòè ãîòîâûå îïåðàöèè è åùå åñòü íåîáðàáîòàííûå îïåðàöèè,

òî ðåøåíèÿ íå ñóùåñòâóåò
32: if ready_ops == ∅ and 𝐹 ̸= ∅ then
33: abort ¾Íåâîçìîæíî íàéòè ðåøåíèå¿
34: end if
35: process_ready_operations(ready_ops, var_ranks, input_vars, F_local_iter,

R_local_iter, layers)
36: // Îïðåäåëÿåò, êàêèå ïåðåìåííûå íóæíî ïåðåäàòü ìåæäó óçëàìè, ÷òîáû âûïîë-

íèòü ãîòîâûå îïåðàöèè.
37: // Äëÿ êàæäîé ãîòîâîé îïåðàöèè:
38: // - Îïðåäåëÿåò, êàêèå âõîäíûå ïåðåìåííûå íåäîñòóïíû íà òåêóùåì ðàíãå.
39: // - Ïëàíèðóåò ïåðåäà÷è ñîîáùåíèé (message_sends â layers) ñ äðóãèõ óçëîâ
40: // è ïðèåìû ñîîáùåíèé (message_receives â layers) íà òåêóùåì óçëå.
41: // - Äîáàâëÿåò îïåðàöèþ â F_local_iter äëÿ âûïîëíåíèÿ íà òåêóùåì óçëå.
42: new_layer := create_new_layer(F_local_iter,R_local_iter, ranks)
43: // Ñîçäàåò íîâûé ñëîé íà îñíîâå F_local_iter è R_local_iter.
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44: // Äëÿ êàæäîãî óçëà:
45: // - Åñëè íà óçëå åñòü îïåðàöèè (F_local_iter[j] ̸= ∅), òî ñîçäàåòñÿ ïîäñëîé

(sub_layer).
46: // Äîáàâëÿåì íîâûé ñëîé ê ïîñëåäîâàòåëüíîñòè ñëîåâ
47: layers := append(layers, new_layer)
48: // Îáíîâëÿåì computed è var_ranks: îòìå÷àåì, êàêèå ïåðåìåííûå áûëè âû÷èñëåíû

íà êàêèõ óçëàõ
49: for all op ∈ ready_ops do
50: for each 𝑦 ∈ output_vars(op) do
51: computed := computed ∪ {𝑦} // Äîáàâëÿåì âûõîäíóþ ïåðåìåííóþ â ìíîæåñòâî

âû÷èñëåííûõ ïåðåìåííûõ
52: 𝑗 := rank(op) // Îïðåäåëÿåì ðàíã, íà êîòîðîì áûëà âû÷èñëåíà ïåðåìåííàÿ
53: var_ranks[𝑦] := var_ranks[𝑦] ∪ {𝑗} // Äîáàâëÿåì ýòîò ðàíã â ìíîæåñòâî ðàíãîâ,

íà êîòîðûõ äîñòóïíà ïåðåìåííàÿ
54: end for each
55: end for all
56: // Óäàëÿåì îáðàáîòàííûå îïåðàöèè èç ìíîæåñòâà íåîáðàáîòàííûõ îïåðàöèé
57: 𝐹 := 𝐹 ∖ ready_ops
58: end while
59: // Âîçâðàùàåì ðåçóëüòàò: ïîñëåäîâàòåëüíîñòü ñëîåâ
60: return layers

Ãåíåðàòîð ïàðàëëåëüíûõ ïðîãðàìì íàïèñàí íà ÿçûêå Python. Âûõîäíûå äàííûå �
èñïîëíÿåìûé êîä íà ÿçûêå C++. Ïðè ýòîì ïàðàëëåëèçì âíóòðè óçëà ïîääåðæèâàåòñÿ
áëàãîäàðÿ OpenMP [22], à ðàñïðåäåëåííîñòü � MPI. Äëÿ ïîääåðæêè îïåðàöèé íà GPU èñ-
ïîëüçóþòñÿ ôðàãìåíòû êîäà, íàïèñàííûå ñ ïîìîùüþ CUDA. Ãåòåðîãåííîñòü íåîáõîäèìà
äëÿ ýôôåêòèâíîé ðåàëèçàöèè íåêîòîðûõ çàäà÷, ïðèìåð êîòîðîé áóäåò äàëåå â ýêñïåðè-
ìåíòàëüíûõ èññëåäîâàíèÿõ.

Êàæäûé ïîäñëîé ïðåäñòàâëåí â âèäå parallel sections (OpenMP). Ïðèìåðû ïîäñëîåâ
ìîæíî ðàññìîòðåòü â ëèñòèíãå 3 è 4.

Листинг 2. Ïîäñëîé ñãåíåðèðîâàííîé ïðîãðàììû ñ àñèíõðîííûì ïðèåìîì ñîîáùåíèÿ.
Åñëè âõîäíûå äàííûå äëÿ îïåðàöèè ïðèíèìàþòñÿ àñèíõðîííî, ïåðåä âûçîâîì ïðîöåäóðû
âñòàâëÿþòñÿ MPI_Wait è ìüþòåêñû äëÿ áëîêèðîâêè, ÷òîáû äîæäàòüñÿ ïîëó÷åíèÿ äàííûõ.
Åñëè âûõîäíûå äàííûå îïåðàöèè îòïðàâëÿþòñÿ àñèíõðîííî, òî ïîñëå âûçîâà ïðîöåäóðû
âñòàâëÿåòñÿ îòïðàâêà âûõîäíûõ äàííûõ ñ ïîìîùüþ MPI_ISend íà íóæíûé óçåë. Â äàí-
íîì ëèñòèíãå 1000 � ýòî óíèêàëüíûé òåã, êîòîðûé ãåíåðèðóåòñÿ äëÿ êàæäîé ïåðåñûëêè
äàííûõ.

1 DF sub_result_union_u_1;

2

3 if (rank == 0) {

4 #pragma omp parallel sections

5 {

6 omp_lock_t lock_1000;

7 omp_init_lock (& lock_1000);

8 MPI_Request request_1000;

9 IRecv_df(sub_result_union_1_2 , 1, request_1000 , 1000);

10 #pragma omp section

11 {
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12 omp_set_lock (& lock_1000);

13 MPI_Wait (& request_1000 , MPI_STATUS_IGNORE);

14 omp_unset_lock (& lock_1000);

15 union_sub_result(sub_result_union_0_2 , sub_result_union_1_2 ,

sub_result_union_u_1);

16 }

17 }

18 }

Листинг 3. Ïîêàçàí ïðèìåð ñòðóêòóðû ïîäñëîÿ, ðåàëèçîâàííîãî ñ èñïîëüçîâàíèåì
OpenMP. Êàæäûé pragma omp section ïðåäñòàâëÿåò ñîáîé íåçàâèñèìóþ îïåðàöèþ, êîòîðàÿ
ìîæåò áûòü âûïîëíåíà ïàðàëëåëüíî íà îäíîì óçëå. Âíóòðè êàæäîé ñåêöèè âûçûâàåòñÿ
ñîîòâåòñòâóþùàÿ ïðîöåäóðà (op, op1 è ò. ä.), ðåàëèçóþùàÿ îïåðàöèþ VW-ïëàíà.

1 if (rank == 0) {

2 #pragma omp parallel sections

3 {

4 #pragma omp section

5 {

6 op(A, B, C);

7 }

8 #pragma omp section

9 {

10 op1(A1 , B1 , C1);

11 }

12 ... // op2 , op3 , op4 , op5 ...

13 }

14 }

Êàê ñëåäóåò èç ïîñòàíîâêè çàäà÷è (ðàçäåë 2), êëþ÷åâûì àñïåêòîì ïðåäëàãàåìîãî ïîä-
õîäà ê ñíèæåíèþ ìåæìîäóëüíîãî òðåíèÿ ÿâëÿåòñÿ îòêàç îò óíèâåðñàëüíîé èñïîëíèòåëüíîé
ñèñòåìû â ïîëüçó ñïåöèàëèçèðîâàííîé ñòàòè÷åñêîé ãåíåðàöèè êîäà. Â îòëè÷èå îò òðàäè-
öèîííûõ ñèñòåì, èñïîëüçóþùèõ èíòåðïðåòàöèþ èëè äèíàìè÷åñêóþ êîìïèëÿöèþ, ñòàòè-
÷åñêèé ãåíåðàòîð ïîçâîëÿåò óñòðàíèòü õàðàêòåðíûå äëÿ íèõ runtime-íàêëàäíûå ðàñõîäû,
îñîáåííî äëÿ çàäà÷, äîïóñêàþùèõ ïîñëîéíîå ïðåäñòàâëåíèå âû÷èñëèòåëüíîãî ïðîöåññà.

Íî, êàê îòìå÷åíî â ïîñòàíîâêå çàäà÷è, ïîäîáíàÿ ñïåöèàëèçàöèÿ íåèçáåæíî íàêëàäûâà-
åò îïðåäåëåííûå îãðàíè÷åíèÿ. Îñíîâíîå èç íèõ ñâÿçàíî ñ íåîáõîäèìîñòüþ ïðèíÿòèÿ âñåõ
ðåøåíèé î ðàñïðåäåëåíèè îïåðàöèé, ïëàíèðîâàíèè êîììóíèêàöèé è ñèíõðîíèçàöèè èñ-
êëþ÷èòåëüíî íà ýòàïå ãåíåðàöèè êîäà. Ýòî ñóùåñòâåííî ñíèæàåò ýôôåêòèâíîñòü ïîäõîäà
ïðè ðàáîòå ñ çàäà÷àìè, òðåáóþùèìè äèíàìè÷åñêîé àäàïòàöèè âû÷èñëèòåëüíîãî ïðîöåññà
â õîäå âûïîëíåíèÿ. Äëÿ ýôôåêòèâíîé ðåàëèçàöèè ïðîãðàìì ñ äèíàìè÷åñêèìè ñâîéñòâàìè
ñëåäóåò èñïîëüçîâàòü èñïîëíèòåëüíûå ñèñòåìû è èíòåðïðåòàòîðû, ãäå îáåñïå÷åíèå äèíà-
ìè÷åñêèõ ñâîéñòâ áîëåå ñóùåñòâåííî, ÷åì íàêëàäíûå ðàñõîäû íà âûçîâ ÔÊ.

4. Экспериментальные исследования. Äëÿ ïðîâåäåíèÿ òåñòèðîâàíèÿ áûëà âûáðà-
íà çàäà÷à ìíîãîêàíàëüíîé ñâåðòêè ñåéñìè÷åñêèõ ñèãíàëîâ. Ïîäðîáíîå îïèñàíèå ýòîé çà-
äà÷è ìîæíî íàéòè â [12]. Óïðîùåííî çàäà÷à ñâîäèòñÿ ê ìíîæåñòâåííîìó ïðèìåíåíèþ
áûñòðîãî ïðåîáðàçîâàíèÿ Ôóðüå (ÁÏÔ) äëÿ ñâåðòêè âõîäíûõ ñèãíàëîâ ñ îïîðíûì ñèãíà-
ëîì.

Â ðàìêàõ ðåøàåìîé çàäà÷è ïîäãîòîâëåíû òåñòîâûå äàííûå â êîëè÷åñòâå 50 ñåéñìîòðàññ
è îïîðíîãî ñèãíàëà. Â ñîîòâåòñòâèè ñ òåõíè÷åñêèìè òðåáîâàíèÿìè, âðåìÿ âû÷èñëåíèé íå
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Рис. 2. Представлены результаты сравнительного анализа производительности при различных

соотношениях CPU/GPU-вычислений для задачи многоканальной свертки сейсмических сигналов. По

оси ординат отложено время выполнения (мс), по оси абсцисс — пропорция распределения операций

между CPU и GPU. Исследование проводилось на трех типах графических ускорителей,

демонстрирующих различные характеристики: тестирование на видеокарте MX940: минимальное время

достигается при 50 операциях на CPU и 0 на GPU. После этого наблюдается плато и последующее

увеличение времени, начиная с соотношения 20/30, что указывает на ограничения архитектуры MX940

в параллельной обработке большого количества БПФ на GPU; тестирование на видеокарте 1660 TI:

виден резкий скачок времени выполнения после соотношения 50/0, предположительно вызванный

накладными расходами на инициализацию CUDA. Далее наблюдается снижение времени, с

минимальным значением при соотношении 2/48, что подтверждает эффективность гетерогенных

вычислений для этой задачи на данной видеокарте; тестирование на видеокарте 3060 TI: На данной

видеокарте удается добиться целевого показателя времени выполнения менее одной секунды.

Минимальное время выполнения достигается при соотношении операций 10/40

äîëæíî ïðåâûøàòü 1 ñåêóíäû íà íåáîëüøîì êîìïüþòåðå, êîòîðûé ìîæíî ¾áðàòü â ïîëå¿
(íàïðèìåð, íîóòáóêå ñ âèäåîêàðòîé).

Êàê îòìå÷àëîñü â ïîñòàíîâêå çàäà÷è (ðàçäåë 2), êëþ÷åâûì àñïåêòîì àâòîìàòè÷åñêîãî
êîíñòðóèðîâàíèÿ ïðîãðàìì â êîíöåïöèè àêòèâíûõ çíàíèé ÿâëÿåòñÿ óìåíüøåíèå íàêëàä-
íûõ ðàñõîäîâ ìîäóëüíûõ îáîëî÷åê, âêëþ÷àÿ îïòèìèçàöèþ ïåðåäà÷è äàííûõ ìåæäó CPU
è GPU. Â äàííîé ðàáîòå ýòî äîñòèãàåòñÿ çà ñ÷åò äâóõ ìåõàíèçìîâ:

� Èñïîëüçîâàíèå ñïåöèàëèçèðîâàííûõ ôðàãìåíòîâ êîäà äëÿ GPU � â îòëè÷èå îò
¾îáåðòî÷íûõ¿ ðåøåíèé.

� Ïàêåòíàÿ îáðàáîòêà îïåðàöèé ÁÏÔ ÷åðåç cuFFTPlan � êàê îáñóæäàëîñü ðàíåå,
àãðåãàöèÿ îäíîòèïíûõ îïåðàöèé ñíèæàåò íàêëàäíûå ðàñõîäû íà èíèöèàëèçàöèþ CUDA è
ïåðåñûëêó äàííûõ.
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Äëÿ ðåàëèçàöèè äàííîé çàäà÷è èñïîëüçîâàëñÿ ãåíåðàòîð ïàðàëëåëüíûõ ïðîãðàìì ñ
îïåðàöèÿìè íà CPU è GPU. Îäíà îïåðàöèÿ íà CPU ïîçâîëÿåò âû÷èñëèòü ñâåðòêó îä-
íîé ñåéñìè÷åñêîé òðàññû. Ôðàãìåíò êîäà íà GPU èñïîëüçóåò CUDA [23] äëÿ ðåàëèçàöèè
áûñòðîãî ïðåîáðàçîâàíèÿ Ôóðüå. Áûñòðîå ïðåîáðàçîâàíèå Ôóðüå (ÁÏÔ) ðåàëèçîâàíî ñ
ïîìîùüþ áèáëèîòåêè cuFFT, ïðåäîñòàâëÿþùåé âûñîêîïðîèçâîäèòåëüíûå ôóíêöèè äëÿ
îáðàáîòêè ñèãíàëîâ íà GPU.

Îäíà èç îñîáåííîñòåé çàäà÷è çàêëþ÷àåòñÿ â òîì, ÷òî êàæäûé ñåéñìè÷åñêèé ñèãíàë
èìååò îäèíàêîâóþ äëèòåëüíîñòü, ÷òî ïîçâîëÿåò âû÷èñëÿòü íåñêîëüêî ñåéñìè÷åñêèõ ñèã-
íàëîâ â îäíîì ôðàãìåíòå êîäà íà GPU. Äëÿ ýòîãî èñïîëüçóåòñÿ cuFFTPlan áèáëèîòåêè
cuFFT.

Îïòèìàëüíîå êîëè÷åñòâî çàïóñêàåìûõ îïåðàöèé íà CPU è GPU îïðåäåëÿëîñü ýêñïå-
ðèìåíòàëüíî. Ýêñïåðèìåíòû ìîæíî íàáëþäàòü íà ðèñóíêå 2.

Ðåçóëüòàòû ïîêàçûâàþò, ÷òî:
� Íà ñëàáûõ GPU (MX940) âûãîäíåå èñïîëüçîâàòü òîëüêî CPU.
� Íà ìîùíûõ GPU (3060 Ti) îïòèìàëüíî 10 CPU-îïåðàöèé + 40 GPU-îïåðàöèé (óêëà-

äûâàåòñÿ â 1 ñåê).
Ýòî ïîäòâåðæäàåò òåçèñ èç ïîñòàíîâêè çàäà÷è: âûáîð òèïà ôðàãìåíòà êîäà

(CPU/GPU) è èõ àãðåãàöèÿ ñóùåñòâåííî âëèÿþò íà ïðîèçâîäèòåëüíîñòü.
Заключение. Â ðàáîòå ðàññìîòðåí ïîäõîä ê ñíèæåíèþ äîëè íàêëàäíûõ ðàñõîäîâ íà

âûçîâ ìîäóëåé â ïðîãðàììàõ, êîíñòðóèðóåìûõ àâòîìàòè÷åñêè íà îñíîâå êîíöåïöèè àê-
òèâíûõ çíàíèé. Óìåíüøåíèå íàêëàäíûõ ðàñõîäîâ äîñòèãàåòñÿ çà ñ÷åò ôîðìàëüíîãî îïè-
ñàíèÿ ñâîéñòâ ìîäóëåé â ôîðìå, äîñòóïíîé äëÿ àâòîìàòè÷åñêîãî èñïîëüçîâàíèÿ ñèñòåìîé
êîíñòðóèðîâàíèÿ, à òàêæå çà ñ÷åò îáåñïå÷åíèÿ âîçìîæíîñòè àâòîìàòè÷åñêîãî ïðèìåíå-
íèÿ îïòèìèçèðóþùèõ ïðåîáðàçîâàíèé, ñïåöèôè÷íûõ äëÿ êîíêðåòíîé ïðåäìåòíîé îáëàñòè.
Ðàçðàáîòàí ãåíåðàòîð, îáåñïå÷èâàþùèé êîíñòðóèðîâàíèå âûñîêîýôôåêòèâíûõ ïðîãðàìì
÷àñòíîãî âèäà íà îñíîâå ïðåäëàãàåìîãî ïîäõîäà. Åãî ðàáîòà èññëåäîâàíà íà ïðèìåðå ïðàê-
òè÷åñêîé çàäà÷è ìíîãîêàíàëüíîé ñâåðòêè ñåéñìè÷åñêèõ ñèãíàëîâ, ãäå ïðîäåìîíñòðèðîâàíî
âûñîêîå êà÷åñòâî ñêîíñòðóèðîâàííîãî êîäà.

Äàëüíåéøåå ðàçâèòèå ïîäõîäà ïîäðàçóìåâàåò åãî ïðèìåíåíèå ê ðåøåíèþ äðóãèõ
êëàññîâ çàäà÷, ÷òî ïîòðåáóåò ðàçâèòèÿ ìàòåìàòè÷åñêîãî àïïàðàòà îïèñàíèÿ ìîäóëåé è
èõ ñóùåñòâåííûõ ôóíêöèîíàëüíûõ è íåôóíêöèîíàëüíûõ ñâîéñòâ, à òàêæå ðàçðàáîòêè
àëãîðèòìîâ, ñïåöèôè÷íûõ äëÿ ðàçëè÷íûõ ïðåäìåòíûõ îáëàñòåé.
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Today, classification of skin diseases based on automated systems by analyzing medical images taken
from the affected skin surface is one of the important methods to be studied. Skin diseases are one of
the global health problems that is increasing year by year and endangering the lives of many people.
Early detection of this disease is crucial in preventing its progression and its consequences. Currently,
many studies are being conducted to detect skin diseases at early stages and several solutions are being
proposed. In particular, classification of skin diseases based on medical images using intelligent systems
is one of the best solutions proposed by researchers. In this research work, the methods, models and
algorithms for automatic classification of skin diseases based on computer-aided machine learning (ML)
and deep learning (DL) algorithms were analyzed. Also, methods for pre-processing medical images
were studied to ensure fast and accurate performance of ML and DL models. As a result of the analysis,
comparative tables were developed for further research work to compare the results of previous studies
and the accuracy of the models proposed in them. The main goal of the study is to fill the research gap
in the application of ML and DL models in skin disease classification. This study will help researchers
find better solutions for classifying skin diseases, identify existing problems and recent achievements
in the classification.

Key words: Skin diseases, Medical images, Image preprocessing, Segmentation, Classification,
Machine learning, Deep learning.
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В настоящее время одним из важнейших методов, требующих изучения, является классифи-
кация кожных заболеваний на основе автоматизированных систем, работающих с медицин-
скими изображениями, полученными с поверхности пораженной кожи. Кожные заболевания
представляют собой глобальную проблему здравоохранения: их распространенность ежегодно
увеличивается, создавая серьезную угрозу жизни и здоровью миллионов людей. Ранняя диа-
гностика играет ключевую роль в предотвращении прогрессирования болезни и ее осложне-
ний. Сегодня ведется большое количество исследований, направленных на выявление кожных
заболеваний на начальных стадиях, и предлагаются различные решения. Одним из наиболее
перспективных подходов, предложенных учеными, является использование интеллектуальных
систем для классификации заболеваний по медицинским изображениям. В данной работе бы-
ли проанализированы методы, модели и алгоритмы автоматической классификации кожных
заболеваний на основе машинного обучения (ML) и глубокого обучения (DL). Также были изу-
чены методы предварительной обработки медицинских изображений, позволяющие повысить
точность и скорость работы моделей. В ходе анализа сопоставлены результаты предыдущих
исследований и оценена точность предложенных в них моделей, а также подготовлены сравни-
тельные таблицы для использования в будущих научных работах. Цель исследования — вос-
полнить существующий пробел в области применения ML и DL для классификации кожных
заболеваний. Полученные выводы помогут исследователям разрабатывать более эффективные
решения, выявлять текущие проблемы и учитывать новейшие достижения в данной сфере.

Ключевые слова: кожные заболевания, медицинские изображения, предварительная об-
работка изображений, сегментация, классификация, машинное обучение, глубокое обучение.

Introduction. Worldwide, skin diseases account for 1.79 % of the global burden of all
other types of disease. According to the American Academy of Dermatology, 1 in 4 people in
the United States have a skin disease [1]. The most common and dangerous types of skin diseases
are eczema, melanoma, psoriasis, squamous cell carcinoma, basal cell carcinoma, etc. [2]. Today,
modern intelligent systems have emerged as a promising approach to develop automated and
objective computer-based classi�cation models for skin diseases. Accurate classi�cation of skin
diseases using automated systems is a very important task. Because it directly a�ects human
life. Therefore, even a small uncertainty can put the lives of patients at risk. Therefore, over
the past few decades, researchers have been working on developing methods to automatically
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Fig. 1. Research organization diagram

diagnose various forms of skin diseases by applying machine learning and deep learning methods
and improving their accuracy.

The purpose of this study is to review ML and DL methods that can be used for computer-
aided diagnosis of skin diseases, as well as to analyze previous and current studies on the
classi�cation of skin diseases. The relevance of the research work is to analyze the methods
of correctly selecting arti�cial intelligence models and adjusting their parameters in the
classi�cation of skin diseases, as well as the application of pre-processing techniques to medical
images. Since these methods are used to perform initial assessments of the most suspicious skin
lesions. The study analyzed the quality of evidence, the usefulness of algorithms, the di�erent
types of skin diseases for which arti�cial intelligence is used, the impact on primary care, and
the possibilities of using computers.

The main focus of intelligent systems for detecting skin diseases using skin surface images
is to extract the characteristics of these diseases. Knowing the speci�c characteristics of each
disease and its location on the skin surface is a key step in classifying the disease. Table 1 below
lists some common skin diseases and their characteristics.

Analyzing skin diseases based on medical images, it is necessary to extract the speci�c
features of skin diseases. Dermatological diseases, unlike internal diseases, usually manifest
externally, therefore, a deep understanding of visual signs and subtle di�erences in skin texture,
color, and pattern is required [10]. Capturing and analyzing these complex visual features is
essential to ensure accurate and reliable classi�cation of skin diseases. By applying medical
image processing technologies based on ML and DL algorithms, scientists are developing
approaches to diagnose skin lesions with complex features. These approaches are expected
to lead to better classi�cation of skin diseases, more accurate diagnosis of patients, and more
e�ective global health care [11]. The organization of this research work is as follows (Figure 1):
Section 2 presents a literature review; Section 3 discusses the general methodology of ML and
DL approaches in skin disease diagnosis; Section 4 presents the research results; and Section 5
presents the research conclusions.

I. Literature review. Today, ML and DL have emerged as promising approaches to
develop automated and objective classi�cation models for skin diseases using computers. The
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Table 1
Common skin diseases and their characteristics

Skin Type Location
N disease of Characteristics on the

appearance disease body

1. Eczema It is the most common chronic
inflammatory skin disease, affecting
15–30 % of children and 2–10 % of adults
worldwide [3]. In people with fair skin,
eczema rashes may appear pink, red, or
purple. If the skin is darker, the eczema
rash may be purple, brown, or gray.

Eczema is most
common on the
elbows, backs of the
knees, neck, and
face.

2. Psoriasis It is a common chronic immune-
mediated inflammatory skin disease,
affecting approximately 2–3 % of the
general population worldwide [4]. The
disease presents as a silvery, red, scaly
rash.

It can involve the
palms and soles
of the human
body, the scalp,
and the nails. The
disease most often
manifests itself in a
sharply demarcated
appearance on the
flexural surfaces of
the elbows and knees
and in the lumbar
region [5].

3. Lupus
Erythema-
tosus

The incidence of lupus is 241 per 100,000
adults in the United States and 210 per
100,000 in Spain [6, 7].

Any part of the body

4. Basal Cell
Carcinoma
(BCC)

Basal cell carcinoma (BCC) can appear
on the skin as a flesh-colored, pearly lump
or a pinkish spot. It often appears as a
shiny, pearly, or clear bump or nodule
that is pink, red, or white [8].

It is usually found on
the skin of the face,
neck, and ear areas.

5. Squamous
Cell
Carcinoma
(SCC)

A hard bump on the skin called a nodule.
The nodule may be the same color as the
skin or may look different. Depending on
the skin color, it may appear as a flat sore
with a crust that is pink, red, black, or
brown [9].

It is usually found on
the skin of the face,
neck, and ear areas.

6. Melanoma It often develops within the skin or may
appear suddenly as a new, dark spot
on the skin. The spot is asymmetrical,
meaning that the two sides do not match,
and the borders of the spot may be
uneven or defined. The spot may be of
several colors, including brown, black,
red, blue, or white [9].

Among men,
melanoma usually
develops on the
upper body,
especially the upper
back, while among
women, melanoma
most often appears
on the legs.
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high accuracy of ML and DL techniques in classifying skin diseases has led to their increased
application. This section reviews the studies conducted by researchers in the �eld of diagnosing
some common skin diseases using DL and ML models.

Several studies have proposed the use of ML algorithms for eczema detection. In particular,
in the article �A method for automatic eczema disease classi�cation using supervised learning�
by researchers Nisar H., Ch'ng Y.K., Ho Y.K., supervised learning ML algorithms for eczema
classi�cation using Support Vector Machine (SVM), Naive Bayesian Classi�er (NBC) and K-
Nearest Neighbor (KNN) algorithms were presented [12]. The researchers initially performed
image preprocessing methods on the acquired images to improve image quality and performed
image segmentation. The features obtained from the training images were ranked using Fisher
score, standard deviation, T-statistic score and correlation coe�cient to extract the most
important features. In this, the researchers used features such as color, size, intensity and
texture to train the model. As a result of the classi�cation, the SVM classi�er shows the best
segmentation result with an accuracy of 84.43 %, while the accuracy of NBC and KNN is
82.77 % and 83.53 %, respectively.

Researchers such as M. Jagdish, SP Gualan Guamangate, MAG Lopez, JA De La
Cruz-Vargas, MER Camacho have conducted research on skin disease classi�cation using
ML algorithms [13]. They developed skin disease detection models using image processing
techniques. To classify skin diseases, 50 image samples were taken from the skin surface and
pre-processed using wavelet analysis. Using the pre-processed sample images for classi�cation,
they used fuzzy clustering methods with KNN and SVM ML algorithms. They achieved 91.2 %
classi�cation accuracy using the KNN classi�cation algorithm. According to the results of the
study, when the KNN algorithm was compared with the SVM technique, it was found that the
KNN algorithm performed better. Scientists identi�ed the types of skin diseases using these
classi�cation methods. However, they only used 50 sample images, which included basal and
squamous cell carcinoma diseases.

Using images of skin surfaces a�ected by diseases such as melanoma, psoriasis, and acne,
researchers S.A. AlDera, M.T.B. Othman presented a model for diagnosing skin diseases [14].
The researchers used a dataset of 377 images of 4 di�erent disease classes in this work. During
the pre-processing stage, the image samples obtained were resized to 250*250 and the median
method was used to reduce noise in the images. Then, the color images were converted to
a grayscale model for segmentation and extraction tasks and the Otsu method was used for
segmentation. In this work, features were extracted using Entropy, Gabor, and Sobel methods to
extract image texture features. Finally, after the features were extracted, a model was developed
based on ML algorithms SVM, Random Forest (RF), and K-Nearest Neighbors (KNN) classi�ers
for disease classi�cation. The results of the proposed model show that SVM achieved 90.7 %
accuracy, while RF and KNN achieved 84.2 % and 67.1 %, respectively. As a result, the SVM
classi�er achieved better accuracy than other ML algorithms. The model proposed by the
researchers can only achieve high accuracy when using a larger dataset of images.

Researcher Mustafa Qais Hatem developed an algorithm to classify skin diseases as
dangerous or safe using their lesions [15]. He used a KNN algorithm to classify skin lesions
according to their severity. The proposed system used dermoscopic images as a dataset. In the
initial stage, morphological �closure� was used to improve image clarity, facilitate skin lesion
segmentation, and �lter the shape and structure of the image. Both traditional and adaptive
thresholding methods were used to segment skin lesions. Then, segmented dermoscopic lesions
were used to extract disease features. Lesion parameters were determined using mathematical
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formulas such as the mean value. The system proposed by the researcher achieved 98 % accuracy
using a KNN classi�er for only two classes (dangerous or safe).

Jonathan Souza, Tiago Mota de Oliveira, Claudemir Casa, and Andre Roberto Ortoncelli
[16] researchers conducted a study on the early detection of lupus skin disease from images
and proposed an automatic lupus detection approach. The study used 905 lupus images as an
experimental database. In the preprocessing stage, all images in the database were resized to
a standard size of 224x224 and new images were created to increase the data. This approach
combines a clustering strategy and a Transfer Learning-based lupus detection method. The
experiments were conducted with eight pretrained models of the CNN architecture, and the
highest accuracy of 96 % was achieved with the Densenet-121 model. The main di�culty in
this work is the lack of a large database of lupus images.

Researchers such as Samir Bandyopadhyay, Payal Bose, Amiya Bhaumik, Sandeep Poddar
[17] developed a hybrid algorithm for detecting 9 di�erent skin diseases based on experience.
In this project, about 40 thousand skin surface images were collected from the ISIC repository
to detect skin diseases. Pre-processing steps such as removing noise from the images, adjusting
their brightness and contrast levels, and adjusting the sharpness level to enhance the edges of
the dark level were performed on the images. To carry out this study, DL algorithms such as
Googlenet, Resnet50, Alexnet, and VGG16 were used to extract lesion features from the skin
surface, and Decision Tree (DT), Multi-Class Support Vector Machine, and AdaBoost Ensemble
ML models were used as classi�cation models. As a result of this study, the researchers proposed
a hybrid model of ML and DL models. According to the proposed model, 4 DL models were
combined with ML classi�ers to extract features from the training data, and a full comparative
analysis was conducted. As a result, it was found that the Resnet50 hybrid model with SVM
gave the best results for classifying skin diseases with an accuracy rate of 99 %.

Researchers Laura K Ferris, Jean A Harkes, Benjamin Gilbert, Daniel G Winger, Ksenia
Golubets, Oleg Akilov, Mahadev Satyanarayanan used the DT classi�er in their article
�Computer-aided classi�cation of melanocytic lesions using dermoscopic images� in order to
assess the severity of skin lesions using dermoscopic images and evaluated the performance of
the classi�er [18]. The researchers calculated severity scores for 173 dermoscopic images of skin
lesions with known histological diagnosis. A cuto� score was used to measure the sensitivity
and speci�city of the classi�er. The study found that the classi�er had a sensitivity of 97.4 %
for melanoma. The limitations of this study are that the image dataset was small and that it
was retrospective, using available images selected by a dermatologist for biopsy.

The literature review revealed the following signi�cant limitations and research gaps in the
studies. In particular, the limited datasets for ML and DL-based skin disease classi�cation and
the lack of a complete system for preprocessing methods for medical images. For the e�ective
performance of ML and DL models, image normalization, preprocessing, data augmentation,
and their balance are important processes. Also, many studies have relied solely on the accuracy
index to evaluate the performance of the model. Although accuracy is a crucial indicator,
additional criteria including sensitivity, speci�city, precision, and F1 score can provide a
more comprehensive assessment of the model's performance. In addition, in some studies, the
proposed models only achieved good results on a speci�c database. The fact that the accuracy
of the model is not general in the detection of skin diseases limits the scope of the study.

II. Methodology. According to the results of the researches and the literature review,
researchers mainly used the following �ve main steps in computer-aided diagnosis of skin
diseases: image acquisition, pre-processing, segmentation, feature extraction, and classi�cation.
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Fig. 2. Process step flow architecture for skin disease classification

The most important steps in computer-aided diagnosis of skin diseases are segmentation
and classi�cation. The process �ow architecture and common methodology for detecting and
classifying skin diseases using image datasets using ML and DL techniques are illustrated in
the following �gure (Figure 2).

2.1. Image pre-processing. Medical image processing technologies play an important
role in medicine for dermatological diagnostics and research. The process of processing medical
images includes many methods to improve their quality and facilitate analysis. Pre-processing
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of medical images obtained from the skin surface is an important step to remove noise from
the image and improve image quality. The main goal of this step is to improve the quality of
skin disease images by removing unnecessary and irrelevant parts of the image. A good choice
of processing technique can signi�cantly improve the accuracy. The following is an analysis of
pre-processing methods for acquired medical images.

Image Resizing. Image resizing refers to the process of changing the dimensions (width and
height) of a captured digital image. The main goal of image resizing is to reduce or increase the
size while preserving as much image detail and clarity as possible. There are several methods
for resizing images, each with di�erent approaches to preserving quality, sharpness, and image
detail.

Normalization. Image normalization is an important process in machine learning and is the
process of adapting images to certain standards in order to reduce errors in model performance.
In this case, before entering images into the model, their pixel values are brought to a certain
range. This range is usually from 0 to 255 for images with an 8-bit depth, where 0 represents
black and 255 represents white. Normalization is performed to improve the contrast of the image
or to standardize pixel values for further processing. As a result, the model is able to read the
received data more stably and faster. At the same time, errors that occur during calculation
are prevented. The following methods of image normalization are widely used in practice.

1. Min-Max normalization. In this method, the largest and smallest pixel values of the image
are found and adjusted to a certain range. The general formula for normalizing images in the
range [0; 1] is as follows:

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑𝑣𝑎𝑙𝑢𝑒 =
𝑃𝑖𝑥𝑒𝑙𝑣𝑎𝑙𝑢𝑒 −𝑀𝑖𝑛𝑣𝑎𝑙𝑢𝑒

𝑀𝑎𝑥𝑣𝑎𝑙𝑢𝑒 −𝑀𝑖𝑛𝑣𝑎𝑙𝑢𝑒

(1)

To normalize images in the range [-1; 1], the above formula is modi�ed as follows:

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑𝑣𝑎𝑙𝑢𝑒 = 2 * 𝑃𝑖𝑥𝑒𝑙𝑣𝑎𝑙𝑢𝑒 −𝑀𝑖𝑛𝑣𝑎𝑙𝑢𝑒

𝑀𝑎𝑥𝑣𝑎𝑙𝑢𝑒 −𝑀𝑖𝑛𝑣𝑎𝑙𝑢𝑒

− 1 (2)

Here,
1) 𝑃𝑖𝑥𝑒𝑙𝑣𝑎𝑙𝑢𝑒� the original pixel value in the image.
2) 𝑀𝑖𝑛𝑣𝑎𝑙𝑢𝑒 � the minimum pixel value (or normalized range) in the image.
3) 𝑀𝑎𝑥𝑣𝑎𝑙𝑢𝑒� the maximum pixel value (or normalized range) in the image.
2. Z-score normalization. This normalization method assumes a Gaussian distribution of the

data and transforms the features to a mean (𝜇) of 0 and a standard deviation (𝜎) of 1. The
formula for Z-score normalization is:

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑𝑣𝑎𝑙𝑢𝑒 =
𝑃𝑖𝑥𝑒𝑙𝑣𝑎𝑙𝑢𝑒 − 𝜇

𝜎
(3)

Here, 𝑃𝑖𝑥𝑒𝑙𝑣𝑎𝑙𝑢𝑒 � the original pixel value in the image, 𝜇 � the mean value in the image,
𝜎 � standard deviation in the image.

This method is particularly useful when working with algorithms that assume normally
distributed data, such as many linear models. Unlike the min-max scaling technique, this
standardization technique is not limited to a speci�c range. This normalization technique mainly
represents features in terms of the number of standard deviations away from the mean [19].

3. Mean normalization. In the mean normalization method, the pixel values of an image are
adjusted to zero by adjusting them to the mean value of the data set. This ensures a balanced
distribution of the image data.
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𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑𝑣𝑎𝑙𝑢𝑒 =
𝑃𝑖𝑥𝑒𝑙𝑣𝑎𝑙𝑢𝑒 − 𝜇

𝑀𝑎𝑥𝑣𝑎𝑙𝑢𝑒 −𝑀𝑖𝑛𝑣𝑎𝑙𝑢𝑒

(4)

Here, 𝑃𝑖𝑥𝑒𝑙𝑣𝑎𝑙𝑢𝑒 � the original pixel value in the image, 𝜇 � the mean value in the image,
𝑀𝑖𝑛𝑣𝑎𝑙𝑢𝑒 � the minimum pixel value (or normalized range) in the image, 𝑀𝑎𝑥𝑣𝑎𝑙𝑢𝑒� the
maximum pixel value (or normalized range) in the image.

4. Decimal Scaling. Decimal scaling is a method of scaling image data by reducing a set of
image data with a constant high intensity value to smaller manageable values. This method
simpli�es large pixel values by dividing them by powers of 10. This is an e�cient way to scale
data without complex calculations [20].

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑𝑣𝑎𝑙𝑢𝑒 =
𝑃𝑖𝑥𝑒𝑙𝑣𝑎𝑙𝑢𝑒

10𝑗
(5)

Here,
1)𝑃𝑖𝑥𝑒𝑙𝑣𝑎𝑙𝑢𝑒 � the original pixel value in the image.
2) The scale factor j is the smallest integer, and it is de�ned as follows:: 10𝑗 ≥ |𝐼𝑚𝑎𝑥|
5. L2 Normalization. The L2 normalization method is also known as Euclidean

normalization. The L2 norm (Euclidean norm) of pixel intensity is a method of scaling image
data so that it is equal to 1. This method is commonly used in machine learning, deep learning,
and image processing to normalize image features. The L2 normalization for pixel intensity is
performed as follows:

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑𝑣𝑎𝑙𝑢𝑒 =
𝑃𝑖𝑥𝑒𝑙𝑣𝑎𝑙𝑢𝑒

‖𝐼‖2
(6)

Here,
1) 𝑃𝑖𝑥𝑒𝑙𝑣𝑎𝑙𝑢𝑒 � the original pixel value in the image.

2) ‖𝐼‖2 is the L2 norm of the pixel intensity and it is de�ned as: ‖𝐼‖2 =
√︁∑︀𝑁

𝑖=1 𝐼
2
𝑖

Noise reduction. Noise in medical images can hinder the interpretation of medical scans and
lead to misdiagnosis. Therefore, noise reduction in medical images is a very important task.
The quality of medical images such as CT, MRI, X-ray, endoscopic images, and dermatological
images is crucial for accurate diagnosis and treatment. Noise reduction methods should ensure
the preservation of important details such as anatomical structures or pathological features,
while eliminating distortions in the image that enter the model. The goal of image noise
reduction is not only to remove noise, but also to preserve clinical details. The main requirements
for image denoising [21]:

- Smooth areas should remain smooth.
- Protect image boundaries (prevent blurring).
- Preserve texture information.
- Preserve overall contrast.
- Prevent new artifacts from appearing.
Noise reduction methods are classi�ed as follows, based on the noise reduction approaches

[22]:
1) Filtering method;
2) domain method;
3) Statistical method;
4) Machine Learning (ML) methods.
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Fig. 3. Edge detection methods

Edge detection. Edge detection is a basic image processing technique that is used to detect
and locate the boundaries or contours of objects in an image. This technique is used to detect
discontinuities in brightness intensity in an image and extract the contours of objects in the
image. The boundaries of any object in an image are usually de�ned as regions where the
brightness intensity changes sharply. The main goal of edge detection is to distinguish these
regions [23]. There are various methods for edge detection, which are illustrated in Figure 3
below:

Contrast enhancement. Contrast enhancement improves the visibility of objects in an image.
This process is accomplished by increasing the di�erence in brightness between image objects
and their background.

Contrast enhancement is typically done in two steps: 1) Contrast stretch: This method
improves brightness di�erences evenly across the entire brightness range of the image.

2) Tonal enhancement: This step increases the brightness di�erences in speci�c areas of the
image (shadow (dark), midtone (gray), or highlight (light) parts) at the expense of brightness
di�erences in other areas.

Contrast enhancement makes objects in an image stand out more clearly and makes them
more visible. The following table lists several techniques and methods for image contrast
enhancement (Table 2).

Binarization. The main purpose of image binarization is to clearly and e�ciently extract
important information from complex medical images, which is an important factor in speeding
up the diagnostic and analysis processes and increasing the accuracy of the results. It is also
a medical image processing technique used to convert grayscale or color images into binary
images. Binary images have only two pixel values: 0 (black) and 1 (white). This technique is
widely used to highlight important features in an image, segment speci�c regions, or simplify
medical image analysis.

Color normalization. Color normalization is the process of averaging the color changes from
one image to another. There are many di�erent normalization algorithms, including histogram
speci�cation, Reinhardt's method, Macenko's method, spot color descriptor (SCD), full color
normalization, structure-preserving color normalization (SPCN), and many others [24].

Morphological operations are techniques used in image processing that focuses on the
structure and shape of image components. These techniques process images based on their
shapes and are mainly used in binary images, but they can also be used for grayscale images.
The basic idea is to use structural elements to analyze an image and modify pixel values based
on the spatial location and shape of a structural element. Erosion, expansion, opening, closing,
and other important morphological processes serve various purposes in image enhancement
and evaluation [25]. The modi�cation and analysis of shapes and structures within images
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Table 2
Contrast enhancement techniques and methods

Image Contrast 
Enhancement 

Techniques and 
Methods 

Histogram 
Equalization 

Global Histogram 
Equalization (GHE) 

This method spreads out the intensity values of an 
image’s histogram to utilize the full range of possible 
values, enhancing the overall contrast. 

Adaptive Histogram 
Equalization (AHE) 

This variant improves local contrast and brings out 
more detail by applying histogram equalization to 
smaller regions within the image. 

Contrast Limited 
Adaptive Histogram 

Equalization (CLAHE) 

This method is designed to overcome noise 
amplification issues in AHE by limiting the contrast 
enhancement in homogeneous areas. 

Linear Contrast 
Stretching 

Min-Max Stretching 
Involves transforming the intensity values to cover 
the full range available, usually from 0 to 255 in an 
8-bit image.

Mean and Standard 
Deviation Stretching 

Adjusts image contrast based on the mean and 
standard deviation of pixel intensities, ensuring a 
balanced distribution around the mean value. 

Gamma Correction 
Power-Law 

Transformations 

Utilizes a parameter called gamma to correct the 
brightness level. Gamma <1 enhances images with 
dark regions, while gamma >1 enhances images with 
light regions. 

Piecewise Linear 
Contrast Stretching 

Contrast Stretching 
with Multiple 
Breakpoints 

Divides the intensity range into segments and applies 
different linear transformations to each. This allows 
more nuanced adjustments to different parts of the 
image. 

Logarithmic and 
Exponential 

Transformations 

Log Transformation 
Useful for enhancing details in the darker regions of 
an image. 

Exponential 
Transformation 

Helps enhance bright areas by applying exponential 
scaling. 

Unsharp Masking 
Enhances contrast by increasing the brightness 
difference around edges. This method sharpens the 
image and makes details more prominent. 

Retinex Theory 
Single Scale Retinex 

(SSR) and Multi-Scale 
Retinex (MSR) 

Aims to mimic human visual perception by 
enhancing both global and local contrast in varied 
illumination conditions. 

is accomplished using morphological analysis, a powerful tool in image processing. These
techniques are useful in a variety of applications, including pattern recognition, computer vision,
and medical imaging, as they can be used to enhance image features, remove noise, and identify
existing patterns.

2.2. Segmentation. Image segmentation is a computer vision technique that aims to
simplify and analyze digital images by dividing them into groups of pixels. Segmentation is the
process of dividing or separating any digital image into multiple parts (segments). The goal of
image segmentation is to present it in the simplest possible form and make it highly informative
for analysis. There are several methods for image segmentation, with edge segmentation being
one of the simplest and most e�ective. In this method, the pixels of the image are separated
according to the contrast of the image, mainly based on intensity, and then a speci�c area of
the image is divided into segments based on the application.

Today to achieve image segmentation, traditional and deep learning methods, as shown
above (Figure 4), are used widely. These methods also include several methods in their place.
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Fig. 4. Image segmentation methods [26]

Taking into account the complexity of the problem and the characteristics of the image, one of
the appropriate methods is selected and image segmentation is achieved.

2.3. Feature extraction. After the segmentation step, feature extraction is the next
major step, which is the input to neural classi�ers. Data cannot be directly fed to a neural
classi�er for classi�cation, only the extracted features are given as input. Feature extraction
and feature selection are very laborious tasks that require a lot of time, e�ort, and human
resources. Selecting the right features is very important because the performance of an ML
classi�er depends on the features. There are many feature extraction methods that can be used
before feeding the dataset to an ML classi�er for the classi�cation task. These include stationary
features, morphological features, wavelet-based features, color-based features, local and global
features, and others. The most commonly used feature extraction methods for skin disease
detection task are texture-based features, gray-level co-occurrence matrix (GLCM), asymmetry,
boundary, color, and diameter (ABCD) rule-based features, principal component analysis
(PCA) features, and geometric features. However, most researchers have used a combination of
several features to achieve good classi�er performance.

Feature extraction is the most important task in the classi�cation task using ML classi�er.
However, this step is not important for DL-based classi�er because DL classi�ers extract features
automatically. However, several researchers have used feature extraction techniques to further
improve DL-based classi�ers in the detection of various skin diseases. Some researchers have
achieved good results in the classi�cation of skin diseases using DL techniques without using
any feature extraction methods.

2.4. Classification.ML-based classi�cation has been proven to be one of the best methods
for skin disease detection. Many researchers have identi�ed skin disease types using ML-based
classi�ers, but various types of preprocessing, segmentation, and feature extraction methods
are used in the pre-classi�cation process. The research results show that many researchers
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have achieved even better accuracy using ML classi�ers for skin disease classi�cation than DL
classi�ers. The most e�ective and commonly used ML classi�ers for skin disease detection are
Support Vector Machine (SVM), Random Forest (RF), SVM with Radial basis kernel (SVM-
RBF), Adaptive Arti�cial Neural Network (AANN), Radial Basis Function Neural Network
(RBFNN), Ensemble Classi�er (EC), Decision Tree (DT), K-Nearest Neighbor (KNN), etc
[44].

DL is a highly trainable method that does not require any input features. Deep learning
models are preferred for skin disease detection tasks, especially for detecting skin diseases from
large datasets of images. The use of DL models has increased signi�cantly in recent decades,
especially for object detection and segmentation tasks. The most commonly used DL models
for skin disease detection and classi�cation tasks are Convolutional neural networks (CNN),
Deep convolutional neural networks (Deep CNN), Long short term memory networks (LSTM),
AlexNet, Residual Network (ResNet), UNet, VGG, Explainable Arti�cial Intelligence (EAI),
EfcientNetB1, ShufeNet [45].

III. Comparative analysis of results. The literature review and the studies conducted
suggest that integrating ML and DL approaches for classifying skin diseases into dermatological
practice will allow for early detection and treatment of diseases. Tables 3�4 below provide a
comprehensive comparative analysis of the methods based on ML and DL algorithms proposed
by researchers for classifying skin diseases. The tables analyze 20 studies with important
parameters such as the type of disease, pre-processing methods for medical images, optimal
classi�cation methods, used database, number of data, percentage of highest scores (accuracy),
and similar parameters.

Table 3 it can be observed the some types of skin diseases detection based on ML algorithms
have been studied from the recently published peer review articles. According to the table, the
authors in [30] used Extreme Learning Machine (ELM) classifer as the machine learning model
for the detection of melanoma from 10015 numbers of skin images to produce 97.68 % accuracy.
CAM integration was used in Spatial-autoencoder and FFT-autoencoder to e�ectively �lter
out noise and extract the most important features in the spatial and frequency domains. The
ELM classi�er is employed after feature extraction, for the subsequent classi�cation. Authors
in [29] also achieved 97.8 % accuracy for the detection of types of skin cancer like BCC, SCC
and melanoma using Support Machine Learnig (SVM) as ML classifer. The Low accuracy %
reported by among all types of skin diseases detection technique is 67 % for acne detection. For
acne detection, the lowest accuracy reported is 67 % using Logistic Regression classifer and the
authors in [32] utilized 3000 skin image dataset.

So, based on the state-of-art analysis Table 3, it was observed that the highest accuracy
of classifcation for the skin diseases detection was achieved of 97.8 % by three diferent types
of skin cancers, BCC, SCC, melanoma. Where all these have used diferent types of ML based
classifer, diferent types of dataset and diferent types features extraction techniques during the
detection process.

All the studied literature on the detection of skin diseases was analyzed using the methods
considered in the above tables. According to it, researchers M. Vidya, Maya V. Karki achieved
high results in the diagnosis of skin cancer based on ML classi�ers using 1000 image samples. The
study used the Geodesic Active Contour (GAC) image preprocessing method. The evaluation
indicators are high in all respects, and the accuracy of the SVM classi�er is 97.8 %.

In DL-based approaches, researchers Himanshu K. Gajera et al. developed the DenseNet-
121 with multi-layer perceptron (MLP) model for melanoma classi�cation and achieved the
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Table 3
Classification of skin diseases using ML algorithms

Sn Type of skin
diseases

Preprocessing Dataset Data
samples

Training
data

Test
data

Algorithm Metrics
Re-
feren-
ces

Year

1 BCC, SCC,
melanoma

Automatic
Grabcut
Segmentation,
digital hair
removal
(DHR),
Gaussian
filtering

ISIC 2019
challenge
dataset

25331 80 % 20 % SVM KNN
DT

Accuracy =
95 % 94 %
93 %

[27] 2022

2 Melanoma Gaussian
filter va
median filter,
k means
clustering

ISIC 2019
challenge
dataset

25000 70 % 30 % Multi-class
Support
Vector
Machine
(MSVM)

Accuracy=
96.25 %,
precision=
96.32 %

[28] 2020

3 Acne, cherry
angioma,
melanoma,
psoriasis

Otsu’s, for
extracting
features
Gabor,
Entropy,
and Sobel

Private data 377 80 % 20 % SVM KNN
RF

Accuracy=
90.7 % 84.2 %
67.1 %

[10] 2022

4 BCC, SCC,
melanoma

Geodesic
Active
Contour
(GAC)

International
Skin Imaging
Collaboration
(ISIC)

1000 - - SVM KNN
Näıve Bayes

Accuracy=
97.8 %

[29] 2020

5 Melanoma Dual-
autoencoder

HAM10000 10015 80 % 20 % Extreme
Learning
Machine
(ELM)

Accuracy=
97.66 %,
precision=
97.68 %

[30] 2024

6 BCC Pre-trained
CNN

ISBI 2016 1952 85 % 15 % SVM Accuracy=
88.02 %

[31] 2023

7 Acne - Private data 3000 80 % 20 % Logistic
Regression

Accuracy=
67 %

[32] 2019

8 eczema,
psoriasis,

Segmentation DermIs
DermQuest
DermNZ

1800 - - SVM,
Quadratic
SVM

Accuracy=
94.74 %

[33] 2019

9 Melanoma ABCD rule PH2 200 80 % 20 % ANN SVM
KNN DT

Accuracy=
92.50 %
89.50 %
82.00 %
90.00 %

[34] 2017

10 Lupus
Erythematosus

LASSO
dimensionality
reduction

Private data 136 70 % 30 % Xgboost Accuracy=
82 %

[35] 2023

highest accuracy acc 98 %. The study used the PH2 dataset as a database. Preprocessing of
medical images was performed using methods such as ABCD, Boundary Localization, Image
Resize and Normalization.

Conclusion. This research paper analyzes approaches based on ML and DL technologies
for early detection and classi�cation of skin diseases based on medical images. The study
focuses on common and dangerous types of skin diseases. Di�erent ML and DL architectures
used for classi�cation of skin diseases are discussed, and the processes leading up to the
classi�cation stage, that is, pre-processing methods for medical images, are studied. As a
conclusion of the study, it is possible to create complex models that can analyze dermatological
images with a high level of accuracy using ML and DL algorithms based on image analysis.
These models are expected to support dermatologists with their ability to classify various
changes in the skin with high accuracy and identify dangerous skin diseases. The use of
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Table 4
Classification of skin diseases using DL algorithms

Sn Type of skin
diseases

Preprocessing Dataset Data
samples

Training
data

Test
data

Algorithm Metrics
Re-
feren-
ces

Year

1 Melanoma data
augmentation
techniques

HAM10000 10000 85 % 15 % MobileNet
V2 with the
LSTM

Accuracy =
84.12 %

[36] 2021

2 BCC data
augmentation
techniques

HAM10000 10000 85 % 15 % MobileNet
V2 with the
LSTM

Accuracy =
96.63 %

[36] 2021

3 psoriasis Resizing,
normalisation

Private data 813 80 % 20 % ResNet50V2,
ResNet101V2,
ResNet152V2

Accuracy=
91.41 %
89.63 %
90.24 %

[37] 2024

4 psoriasis Resizing,
normalisation

Private data 813 80 % 20 % CNN
Ensemble
Model

Accuracy=
93.29 %

[37] 2024

5 Lupus - The National
Centre for
Biotechnology
(NCBI)

330 70 % 30 % attention-
based CNN,
Stacked Bi-
LSTM

Accuracy=
95 % 92 %

[38] 2024

6 Eczema,
Melanoma,
psoriasis,

Resizing Xiangya-
Derm

150223 - - Convolutional
Neural
Network
(CNN)

Accuracy=
87.42 %

[39] 2023

7 melanoma ABCD,
Boundary
Localization,
Image
Resize and
Normalization

PH2 200 70 % 30 % DenseNet-
121 with
multi-layer
perceptron
(MLP)

Accuracy=
98 %

[40] 2023

8 SCC,
melanoma

- ISIC dataset 57536 80 % 20 % Inception-
ResNet-v2
CNN

Accuracy=
89.3 %

[41] 2022

9 BCC,
melanoma

Segmentation,
filter

HAM10000 10000 80 % 20 % S2C-DeLeNet Accuracy=
97.41 %

[42] 2022

10 Eczema,
psoriasis

Resizing,
Gaussian blur

DermNet and
HAM10000

27153 80 % 20 % CNN Accuracy=
96.20 %

[43] 2023

computer-aided diagnostic systems can help dermatologists detect complex skin lesions at
early stages and make decisions. Future research should focus on classifying skin diseases based
on AI approaches and improving the accuracy and robustness of models, and integrating these
technologies into the current healthcare infrastructure.
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6. Cortés Verdú R. et al. Prevalence of systemic lupus erythematosus in Spain: Higher than

previously reported in other countries // Rheumatology. 2020, N 59, P. 2556–2562.

7. Iciar Usategui et al. Systemic Lupus Erythematosus: How Machine Learning Can Help

Distinguish between Infections and Flares // Bioengineering. 2024, N 11(1), 90; [Electron. Res.]:

https://doi.org/10.3390/bioengineering11010090.

8. Basal Cell Carcinoma Treatment in India. [Electron. Res.]: https://bit.ly/3Ybz4Aj.

9. Squamous cell carcinoma of the skin. [Electron. Res.]: https://mayocl.in/4f5yhbd.

10. Bhagyasri M., et al. Study on machine learning and deep learning methods for cancer detection

// J. Image Process AI . 2018. Vol. 4.

11. Kuldeep Vayadande et al. Innovative approaches for skin disease identification in machine

learning: A comprehensive study // Oral Oncology Reports. June 2024. Volume 10, 100365.

12. Nisar H., et al. Automatic segmentation and classification of eczema skin lesions using supervised

learning, 2020; 10.1109/ICOS50156.2020.9293657.

13. Jagdish M., et al. Advance study of skin diseases detection using image processing methods

// NVEO 2022, Vol. 9, N 1, [Electron. Res.]: https://www.cabidigitallibrary.org/doi/full/10.

5555/20220157042.

14. AlDera S. A., Othman M. T. B. A Model for Classification and Diagnosis of Skin Disease using

Machine Learning and Image Processing Techniques // IJACSA. 2022. Vol. 13, N 5.

15. Qays Hatem Mustafa. Skin lesion classification system using a K nearest neighbor algorithm

// HVCI, Biomedicine, and Art. 2022. 5:7. [Electron. Res.]: https://doi.org/10.1186/s42492-022-

00103-6.

16. Souza Jhonatan et al. Automatic Detection of Lupus Butterfly Malar Rash Based on

Transfer Learning. [Electron. Res.]: https://sol.sbc.org.br/index.php/wvc/article/download/

13499/13347/.

17. Bandyopadhyay Samir et al. Machine Learning and Deep Learning Integration for Skin Diseases

Prediction // IJETT ISSN. 11–18, February, 2022. Vol. 70. Issue 2. P. 2231–5381.

18. Laura K Ferris et al. Computer-aided classification of melanocytic lesions using dermoscopic

images // J. Am Acad Dermatol. Nov. 2015; 73(5):769-76.

19. What is Normalization in Machine Learning? A Comprehensive Guide to Data Rescaling.

[Electron. Res.]: https://www.datacamp.com/tutorial/normalization-in-machine-learning.

20. Normalization: The First Step in Image Prep. [Electron. Res.]: https://www.linkedin.com/

pulse/normalization-first-step-image-preprocessing-datavalley-ai-luw1c.

21. Manoj Diwakar, Manoj Kumar. A review on CT image noise and its denoising // Biomedical

Signal Processing and Control. 2018. N 42. P. 73–88.

22. Patil R. et al. Medical Image Denoising Techniques: A Review. 2022. Volume 4, Issue 1.

23. Edge Detection in Image Proc.: An Introduction. [Electron. Res.]: https://blog.roboflow.

com/edge-detection/.

24. Lakshmanan B. et al. Stain removal through color normalization of haematoxylin and eosin

images: a review // Journal of Physics: Conference Series. 2019. 1362.

25. Different Morphological Operations in Image Processing. [Electron. Res.]: https://www.

geeksforgeeks.org/different-morphological-operations-in-image-processing/.

26. Zhe Zhu. Change detection using landsat time series: A review of frequencies, preprocessing,

algorithms, and applications // ISPRS 2017. [Electron. Res.]: https://doi.org/10.1016/j.

isprsjprs.2017.06.013.



70 Прикладные информационные технологии

27. Mostafiz Ahammed, Md. et al. A machine learning approach for skin disease detection and

classification using image segmentation, HA. [Electron. Res.]: https://doi.org/10.1016/j.health.

2022.100122.

28. Krishna M., Monika, N. et al. Skin cancer detection and classification using machine learning.

2020. Volume 33, Part 7. [Electron. Res.]: https://doi.org/10.1016/j.matpr.2020.07.366.

29. Vidya M., et. al. Skin Cancer Detection using Machine Learning Techniques // 2020 IEEE

(CONECCT) 10.1109/CONECCT50063.2020.9198489.

30. Maurya R et al. Skin cancer detection through attention guided dual autoencoder approach

with ELM // Sci. Rep. 2024. 14(1):17785. [Electron. Res.]: https://doi.org/10.1038/s41598-024-

68749-1.

31. Keerthana D et al. Hybrid convolutional neural networks with SVM classifier for classification

of skin cancer // Biomed. 2023. [Electron. Res.]: https://doi.org/10.1016/j.bea.2022.100069.

32. Shuchi Bhadula, et al. Machine Learning Algorithms based Skin Disease Detection // IJITEE.

2019. Vol. 9 Iss. 2. [Electron. Res.]: https://www.researchgate.net/publication/341371302_MLSDD.

33. Hameed N., et al. A Computer-Aided diagnosis system for classifying prominent skin lesions

using machine learning. 2019, DOI: 10.1109/CEEC.2018.8674183.

34. Koklu M. et al. Skin Lesion Classification using Machine Learning Algorithms // Int. J. Intell.

Syst. Appl. Eng., 2017. Vol. 4, N 5, P. 285–289, DOI: 10.18201/ijisae.2017534420.

35. Chen Yin et al. Non-invasive prediction of the chronic degree of lupus nephropathy based on

ultrasound radiomics // Sage Journals Home. 2023. Volume 33, Issue 2.

36. Parvathaneni Naga Srinivasu et al. Classification of Skin Disease Using Deep Learning Neural

Networks with MobileNet V2 and LSTM // Sensors (Basel). 2021 Apr 18; 21(8):2852.

37. Yaseliani Mohammad et al. Diagnostic clinical decision support based on deep learning and

knowledge-based systems for psoriasis: From diagnosis to treatment options // Computers & Industrial

Engineering. January 2024, Vol. 187, 109754.

38. Jothimani Subramani et al. Gene-Based Predictive Modelling for Enhanced Detection of SLE

Using CNN-Based DL Algorithm // Diagnostics, 2024. Vol. 14, Iss. 13.

39. Syed Inthiyaz et al. Skin disease detection using deep learning // Advances in Engineering

Software. January 2023. Vol. 175.

40. Himanshu K. Gajera et al. A comprehensive analysis of dermoscopy images for melanoma

detection via deep CNN features // BSPC. January 2023. Vol. 79, Part 2.

41. Reza Ahmadi Mehr, Ali Ameri. Skin Cancer Detection Based on Deep Learning // Journal of

Biomedical Physics and Engineering. December 2022. Vol. 12, Iss. 6, 55, P. 559–568.

42. Jahin Alam Md. et al. S2C-DeLeNet: A parameter transfer based segmentation-classification

integration for detecting skin cancer lesions from dermoscopic images // Computers in Biology and

Medicine. November 2022, Vol. 150.

43. Hammad Mohamed et al. Enhanced Deep Learning Approach for Accurate Eczema and Psoriasis

Skin Detection // Sensors. 2023, 23, 7295. [Electron. Res.]: https://doi.org/10.3390/s23167295.

44. Rai H. M. et al. Computational Intelligence Transforming Healthcare 4.0: Innovations in Medical

Image Analysis through AI and IoT Integration // DDDSSIHC. 2025. Chap.3, P. 15, CRC Press.

[Electron. Res.]: https://doi.org/10.1201/9781003507505.

45. Bobokhonov A., Xuramov L., Rashidov A. Tibbiy tasvirlar asosida teri kasalliklarini samarali

tasniflash usullari // Digital Transformation and AI, 3(3), 128–139 [Electron. Res.]: https://dtai.

tsue.uz/index.php/dtai/article/view/v3i319.



А. Бобохонов, Л. Хурамов, А. Рашидов 71

Бобохонов Ахмадхон —
докторант кафедры «Искус-
ственный интеллект и инфор-
мационные системы» Самар-
кандского государственного
университета. Научные инте-
ресы включают искусственный

интеллект, обработку и анализ медицинских
изображений, а также применение машинного
обучения в медицине.

Boboxonov Akhmadkhon is a PhD student
at the Department of Artificial Intelligence and
Information Systems, Samarkand State University.
His research interests include artificial intelligence,
medical image processing and analysis, as well as
the application of machine learning in medicine.

Хурамов Латиф — до-
цент кафедры «Искусственный
интеллект и информационные
системы» Самаркандского го-
сударственного университета.
Область интересов: обработ-
ка изображений, компьютерное

зрение, искусственный интеллект в медицине,

технологии распределенных вычислений, ана-
лиз данных.

Khuramov Latif — PhD, Associate Professor
of the Department of Artificial Intelligence
and Information Systems at Samarkand State
University. Field of interests: Image Processing,
Computer vision, Artificial intelligence in
medicine, distributed computing technologies,
Data analyses.

Рашидов Акбар — до-
цент кафедры «Искусственный
интеллект и информационные
системы» Самаркандского го-
сударственного университета.
Область интересов: искусствен-
ный интеллект, большие дан-

ные, распределенные вычислительные техноло-
гии, анализ данных, интеллектуальный анализ
данных.

Rashidov Akbar— PhD, Associate Professor
of the Department of Artificial Intelligence
and Information Systems at Samarkand State
University. Field of interests: Artificial intelligence,
Big Data, distributed computing technologies,
Data analyses, Data mining.

Дата поступления — 05.05.2025



Problems of Informatics. 2025. № 3

A METHOD FOR FORECASTING THE ERROR AND TRAINING
TIME OF NEURAL NETWORKS FOR MULTIVARIATE TIME

SERIES IMPUTATION

A.A. Yurtin

South Ural State University (National Research University),
454080, Chelyabinsk, Russia

DOI: 10.24412/2073-0667-2025-3-72-95
EDN: XLSZLH

The article presents a neural network-based method called tsGAP2, designed for predicting the
error and training time of neural network models used for imputing missing values in multivariate time
series. The input data for the method are neural network represented as a directed acyclic graphs,
where nodes correspond to layers and edges represent connections between them. The method involves
three components: an Autoencoder, which transforms the graph-based representation of the model
into a compact vector form; an Encoder, which encodes the hyperparameters and characteristics of the
computational device; and an Aggregator, which combines the vector representations to generate the
prediction. Training of the tsGAP2 neural network model is carried out using a composite loss function,
defined as a weighted sum of multiple components. Each component evaluates different aspects of the
tsGAP2 model’s output, including the correctness of the decoded neural network model from the
vector representation, the prediction of the model’s error, and its training time. For the study, a
search space comprising 200 different architectures was constructed. During the experiments, 12,000
training runs were conducted on time series from various application domains. The experimental results
demonstrate that the proposed method achieves high accuracy in predicting the target model’s error:
the average error, measured using SMAPE, is 4.4 %, which significantly outperforms existing alternative
approaches, which show an average error of 27.6 %. The average prediction error for training time was
8.8 %, also significantly better than existing methods, which show an error of 61.6 %.
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В статье представлен нейросетевой метод tsGAP2, предназначенный для прогнозирования
ошибки и времени обучения нейросетевых моделей восстановления пропущенных значений
в многомерных временных рядах. Входными данными метода является нейросетевая модель,
представленная в виде ориентированного ациклического графа, в которой узлы соответству-
ют слоям, а дуги — связи между ними. Метод предполагает использование трех компонентов:
Автоэнкодера, который преобразует графовое представление модели в компактное векторное,
Энкодера, кодирующего гиперпараметры и характеристики вычислительного устройства, и
Агрегатора, объединяющего векторные представления и формирующего прогноз. Обучение
нейросетевой модели tsGAP2 осуществляется с использованием составной ошибки, представ-
ляющей собой взвешенную сумму нескольких компонент. Каждая компонента оценивает раз-
личные аспекты выхода модели tsGAP2, включая корректность декодированной из векторного
представления нейросетевой модели, прогноз ошибки и времени ее обучения. Для исследования
было сформировано пространство поиска, включающее 200 различных архитектур. Во время
экспериментов было выполнено 12 000 запусков обучения на временных рядах из различных
предметных областей. Результаты экспериментов показывают, что предложенный метод обес-
печивает высокую точность прогнозирования ошибки целевой модели: средняя ошибка по мере
SMAPE составляет 4.4 %, что значительно превосходит существующие альтернативные подхо-
ды, демонстрирующие ошибку в среднем на уровне 27.6 %. Средняя ошибка прогноза времени
составила 8.8 %, что значительно превосходит существующие альтернативные подходы, де-
монстрирующие ошибку, равную 61.6 %.

Ключевые слова: временные ряды, восстановление пропущенных значений, нейросетевые
модели, автоэнкодер, графовые нейронные сети, механизм внимания, время обучения, ошибка,
поиск архитектуры нейросетей.

Введение. Â íàñòîÿùåå âðåìÿ â øèðîêîì ñïåêòðå ïðåäìåòíûõ îáëàñòåé âîñòðåáîâàíà
èíòåëëåêòóàëüíàÿ îáðàáîòêà ìíîãîìåðíûõ âðåìåííûõ ðÿäîâ: çäðàâîîõðàíåíèå [1], ñóïåð-
êîìïüþòåðíûå ñèñòåìû [2], èíòåðíåò âåùåé [3], þðèñïðóäåíöèÿ [4] è äð. Îäíàêî ðåàëüíûå
äàííûå çà÷àñòóþ ñîäåðæàò ïðîïóñêè, âîçíèêàþùèå ïî ðàçëè÷íûì ïðè÷èíàì. Íàëè÷èå
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ïðîïóñêîâ ñóùåñòâåííî îñëîæíÿåò ïîñëåäóþùóþ îáðàáîòêó âðåìåííûõ ðÿäîâ. Ïðîïóùåí-
íûå çíà÷åíèÿ ìîãóò èíòåðïðåòèðîâàòüñÿ êàê øóì èëè àíîìàëèè, ÷òî ïðèâîäèò ê ñíèæåíèþ
òî÷íîñòè ñòàòèñòè÷åñêèõ ìåòîäîâ è ìîäåëåé ìàøèííîãî îáó÷åíèÿ. Êðîìå òîãî, ìíîãèå ñó-
ùåñòâóþùèå ìåòîäû òðåáóþò ïîëíîòû äàííûõ íà âõîäå è íå ïðåäíàçíà÷åíû äëÿ ðàáîòû
ñ ïðîïóñêàìè, ÷òî äåëàåò ïðåäâàðèòåëüíîå âîññòàíîâëåíèå äàííûõ âàæíûì ýòàïîì ïðåä-
âàðèòåëüíîé îáðàáîòêè.

Ñðåäè ñîâðåìåííûõ ìåòîäîâ âîññòàíîâëåíèÿ ïðîïóñêîâ âî âðåìåííûõ ðÿäàõ îäíèì èç
àêòóàëüíûõ íàïðàâëåíèé ñ÷èòàåòñÿ èñïîëüçîâàíèå íåéðîñåòåâûõ ìîäåëåé [5]. Áëàãîäàðÿ
ñïîñîáíîñòè âûÿâëÿòü çàêîíîìåðíîñòè êàê â ïîñëåäîâàòåëüíîñòè äàííûõ, òàê è ìåæäó
èçìåðåíèÿìè îäíîãî âðåìåííîãî ðÿäà, íåéðîñåòåâûå ìîäåëè äåìîíñòðèðóþò âûñîêóþ ýô-
ôåêòèâíîñòü â çàäà÷àõ àíàëèçà è âîññòàíîâëåíèÿ ìíîãîìåðíûõ âðåìåííûõ ðÿäîâ. Àð-
õèòåêòóðíûå ðåøåíèÿ, ïðèìåíÿåìûå ïðè ìîäåëèðîâàíèè âðåìåííûõ ðÿäîâ, îõâàòûâàþò
øèðîêèé ñïåêòð íåéðîñåòåâûõ ïîäõîäîâ: ðåêóððåíòíûå íåéðîííûå ñåòè (íàïðèìåð, LSTM
è GRU), íåéðîííûå ñåòè, âêëþ÷àþùèå ìåõàíèçì âíèìàíèÿ (òðàíñôîðìåðû) è äð. Ó÷åò
õàðàêòåðèñòèê âðåìåííûõ ðÿäîâ è ïðåäìåòíîé îáëàñòè ïðè âûáîðå àðõèòåêòóðû ïîçâîëÿ-
åò àäàïòèðîâàòü ìîäåëü ê òèïó äàííûõ, ñòðóêòóðå ïðîïóñêîâ è îñîáåííîñòÿì êîíêðåòíîé
çàäà÷è, òåì ñàìûì ïîâûøàÿ òî÷íîñòü âîññòàíîâëåíèÿ. Îäíàêî çàäà÷à âûáîðà è ïîèñêà
ïîäõîäÿùåé àðõèòåêòóðû íåéðîííîé ñåòè îñòàåòñÿ íåòðèâèàëüíîé, ïîñêîëüêó ñâÿçàíà ñ
íàêëàäíûìè ðàñõîäàìè ïî ïðîâåäåíèþ áîëüøîãî êîëè÷åñòâà âû÷èñëèòåëüíûõ ýêñïåðè-
ìåíòîâ.

Îäíèì èç àêòóàëüíûõ íàïðàâëåíèé ðåøåíèÿ âûøåîïèñàííîé ïðîáëåìû ÿâëÿåòñÿ ïî-
èñê àðõèòåêòóðû íåéðîííîé ñåòè (Neural Architecture Search, NAS) [6]. Ïîèñê àðõèòåêòóðû
îñóùåñòâëÿåòñÿ â ðàìêàõ çàäàííîãî ïðîñòðàíñòâà ïîèñêà (Search Space), êîòîðîå âêëþ÷à-
åò â ñåáÿ íåéðîñåòåâûå ìîäåëè, îïðåäåëÿåìûå áîëüøèì êîëè÷åñòâîì ïàðàìåòðîâ: òèïà-
ìè, êîëè÷åñòâîì, ïîðÿäêîì ñîåäèíåíèé, ôóíêöèÿìè àêòèâàöèè ñëîåâ è äð. Ìåòîäû NAS
ïîçâîëÿþò àâòîìàòèçèðîâàòü âûáîð íåéðîííîé ñåòè ïóòåì ïðîãíîçèðîâàíèÿ åå êà÷åñòâà
èëè ñóæåíèÿ ïðîñòðàíñòâà ïîèñêà. Äàííûå ìåòîäû ïðèìåíÿþòñÿ â ñîâðåìåííûõ ñèñòåìàõ
óïðàâëåíèÿ æèçíåííûì öèêëîì ìîäåëåé ìàøèííîãî îáó÷åíèÿ (MLOps) [7], òåõíîëîãèè
AutoML [7], è â ïëàòôîðìàõ äëÿ ïðîâåäåíèÿ ýêñïåðèìåíòîâ è ìîíèòîðèíãà ìîäåëåé, âêëþ-
÷àÿ Weights & Biases (wandb) [8]. Îäíàêî áîëüøèíñòâî èç íèõ èñïîëüçóþò òðàäèöèîííûå
ìåòîäû ïåðåáîðà, íàïðèìåð ñëó÷àéíûé ïîèñê (Random Search) [9] è áàéåñîâñêàÿ îïòèìè-
çàöèÿ (Bayesian Optimization), êîòîðûå òðåáóþò ïðîâåäåíèÿ ìíîæåñòâà äîïîëíèòåëüíûõ
ýêñïåðèìåíòîâ äëÿ íàñòðîéêè ñòðàòåãèè ïîèñêà. Â ñâÿçè ñ âûøåèçëîæåííûì, àêòóàëüíîé
ÿâëÿåòñÿ çàäà÷à ðàçðàáîòêè ìåòîäîâ ïðîãíîçèðîâàíèÿ îøèáêè è âðåìåíè îáó÷åíèÿ íåéðî-
ñåòåâûõ ìîäåëåé äëÿ âîññòàíîâëåíèÿ âðåìåííûõ ðÿäîâ, ïîçâîëÿþùèõ îöåíèâàòü êà÷åñòâî
íåéðîñåòåâîé ìîäåëè áåç íåîáõîäèìîñòè ïîëíîãî îáó÷åíèÿ êàæäîé èç íèõ.

Âêëàä äàííîé ñòàòüè ìîæíî ñôîðìóëèðîâàòü ñëåäóþùèì îáðàçîì:
1) Ïðåäëîæåí ìåòîä tsGAP2 (timeseries Graph Attention Performance Predict), ðåøàþ-

ùèé çàäà÷ó ïðîãíîçèðîâàíèÿ îøèáêè è âðåìåíè îáó÷åíèÿ íåéðîñåòåâûõ ìîäåëåé âîññòà-
íîâëåíèÿ âðåìåííûõ ðÿäîâ. Äëÿ ðåàëèçàöèè ìåòîäà èñïîëüçóþòñÿ ãðàôîâûå íåéðîííûå
ñåòè ñ ìåõàíèçìîì âíèìàíèÿ, ïîçâîëÿþùèå àíàëèçèðîâàòü âõîäíóþ íåéðîñåòåâóþ ìîäåëü,
ïðåäñòàâëåííóþ â âèäå îðèåíòèðîâàííîãî àöèêëè÷åñêîãî ãðàôà. Âî âðåìÿ ôîðìèðîâàíèÿ
ïðîãíîçà âõîäíûå äàííûå îáðàáàòûâàþòñÿ ñëåäóþùèìè êîìïîíåíòàìè: Àâòîýíêîäåðîì,
ôîðìèðóþùèì âåêòîðíîå ïðåäñòàâëåíèå íåéðîñåòåâîé ìîäåëè, Ýíêîäåðîì, ôîðìèðóþùèì
âåêòîðíîå ïðåäñòàâëåíèå ïàðàìåòðîâ îáó÷åíèÿ, è Àãðåãàòîðîì, ïðîäóöèðóþùèì íà îñíîâå
âåêòîðíûõ ïðåäñòàâëåíèé ïðîãíîç ìîäåëè.



A.А. Юртин 77

2) Ïðîâåäåíà ñåðèÿ ýêñïåðèìåíòîâ ñ ïðîñòðàíñòâîì ïîèñêà, âêëþ÷àþùèì 200 óíè-
êàëüíûõ íåéðîñåòåâûõ ìîäåëåé. Âî âðåìÿ ýêñïåðèìåíòîâ áûëî ïðîèçâåäåíî 12 000 çàïóñ-
êîâ îáó÷åíèÿ ìîäåëåé, ðåøàþùèõ çàäà÷ó âîññòàíîâëåíèÿ âðåìåííûõ ðÿäîâ èç ðàçëè÷íûõ
ïðåäìåòíûõ îáëàñòåé. Îáúåì ïðîâåäåííûõ ýêñïåðèìåíòîâ ñîïîñòàâèì ñ àíàëîãè÷íûìè èñ-
ñëåäîâàíèÿìè èç ñìåæíûõ îáëàñòåé NAS [10�11]. Â öåëÿõ îáåñïå÷åíèÿ âîñïðîèçâîäèìîñòè
âû÷èñëèòåëüíûõ ýêñïåðèìåíòîâ âñå èñõîäíûå êîäû è íàáîðû äàííûõ, èñïîëüçóåìûå â äàí-
íîì èññëåäîâàíèè, ðàçìåùåíû â îòêðûòîì ðåïîçèòîðèè [12]. Ðåçóëüòàòû âû÷èñëèòåëüíûõ
ýêñïåðèìåíòîâ äåìîíñòðèðóþò âûñîêóþ òî÷íîñòü ïðîãíîçà îøèáêè öåëåâîé ìîäåëè: ñðåä-
íÿÿ îøèáêà ìåíåå 4.4 %, ÷òî ñóùåñòâåííî ïðåâîñõîäèò ïåðåäîâûå àíàëîãè, äëÿ êîòîðûõ
ñðåäíÿÿ îøèáêà ñîñòàâëÿåò 27.6 %. Ñðåäíÿÿ îøèáêà ïðîãíîçà âðåìåíè îáó÷åíèÿ ìîäå-
ëè ñîñòàâèëà 8.8 %, òîãäà êàê êîíêóðåíòû äåìîíñòðèðóþò â ñðåäíåì îøèáêó íà óðîâíå
61.1 %.

Ñòàòüÿ îðãàíèçîâàíà ñëåäóþùèì îáðàçîì. Ðàçäåë 1 ñîäåðæèò êðàòêèé îáçîð áëèçêèõ
ïî òåìàòèêå ðàáîò. Â ðàçäåëå 2 ïðèâîäÿòñÿ èñïîëüçóåìûå äàëåå ôîðìàëüíûå îïðåäåëå-
íèÿ è íîòàöèÿ. Â ðàçäåëå 3 ïðåäñòàâëåí íîâûé ìåòîä ïðîãíîçèðîâàíèÿ îøèáêè è âðåìå-
íè îáó÷åíèÿ íåéðîñåòåâûõ ìîäåëåé âîññòàíîâëåíèÿ âðåìåííîãî ðÿäà. Ðàçäåë 4 ñîäåðæèò
ðåçóëüòàòû âû÷èñëèòåëüíûõ ýêñïåðèìåíòîâ ïî èññëåäîâàíèþ ýôôåêòèâíîñòè ðàçðàáîòàí-
íîãî ìåòîäà. Â ðàçäåëå 5 îáñóæäàþòñÿ îãðàíè÷åíèÿ è ïðàêòè÷åñêàÿ ïðèìåíèìîñòü ïðåä-
ëîæåííîãî ìåòîäà â çàäà÷àõ NAS. Çàêëþ÷åíèå ñîäåðæèò ñâîäêó ïîëó÷åííûõ ðåçóëüòàòîâ
è íàïðàâëåíèÿ áóäóùèõ èññëåäîâàíèé.

1. Обзор связанных работ. Äëÿ êðàòêîñòè èçëîæåíèÿ â äàëüíåéøåì ïîä качеством
нейросетевой модели â êîíòåêñòå ðåøàåìîé çàäà÷è áóäåì ïîíèìàòü ñîâîêóïíîñòü äâóõ
ïîêàçàòåëåé: îøèáêà ìîäåëè è âðåìÿ åå îáó÷åíèÿ íà îäíîé ýïîõå. Áîëåå âûñîêîå êà÷å-
ñòâî ñîîòâåòñòâóåò ìåíüøåé îøèáêå è ìåíüøåìó âðåìåíè îáó÷åíèÿ. Â çàäà÷àõ NAS äëÿ
ïðåäñêàçàíèÿ êà÷åñòâà íåéðîñåòåâîé ìîäåëè ïðèìåíÿþòñÿ ðàçëè÷íûå âèäû ìåòîäîâ, êîòî-
ðûå óñëîâíî ìîæíî ðàçäåëèòü íà òðè ãðóïïû: ãðàäèåíòíûå ìåòîäû îáó÷åíèÿ àíñàìáëåé,
âåðîÿòíîñòíûå ïîäõîäû è íåéðîñåòåâûå ìîäåëè, îñíîâàííûå íà ìíîãîñëîéíûõ ïåðñåïòðî-
íàõ èëè áàéåñîâñêèõ íåéðîííûõ ñåòÿõ (Bayesian neural networks, BNN) [13]. Ðàññìîòðèì
êàæäóþ ãðóïïó áîëåå ïîäðîáíî.

Äëÿ ðåøåíèÿ çàäà÷ NAS ïðèìåíÿþòñÿ ãðàäèåíòíûå ìåòîäû, íàïðèìåð XGBoost,
NGBoost, LightGBM è Random Forest [14]. Îäíàêî èõ ýôôåêòèâíîñòü ìîæåò áûòü îãðàíè-
÷åíà íåîáõîäèìîñòüþ íàñòðîéêè ãèïåðïàðàìåòðîâ è íåäîñòàòî÷íîé ñïîñîáíîñòüþ ìîäåëè-
ðîâàòü ñëîæíûå ñòðóêòóðíûå çàâèñèìîñòè, õàðàêòåðíûå äëÿ íåéðîííûõ ìîäåëåé.

Ãàóññîâñêèå ïðîöåññû (Gaussian Processes, GP) ïðèìåíÿþòñÿ â çàäà÷àõ NAS áëàãîäàðÿ
ñïîñîáíîñòè ìîäåëèðîâàòü ñëîæíûå íåëèíåéíûå çàâèñèìîñòè. Â ðàáîòå [15] äëÿ ìîäåëè-
ðîâàíèÿ êà÷åñòâà ìîäåëè ïðèìåíÿåòñÿ âàðèàöèîííûé ðàçðåæåííûé ãàóññîâñêèé ïðîöåññ
(Variational Sparse Gaussian Process, VSGP), îáåñïå÷èâàþùèé âîçìîæíîñòü ïðèìåíåíèÿ
GP-ìîäåëåé â âûñîêîðàçìåðíûõ ïðîñòðàíñòâàõ ïðèçíàêîâ, õàðàêòåðíûõ äëÿ îïèñàíèÿ
íåéðîííûõ ìîäåëåé. Íåñìîòðÿ íà èñïîëüçîâàíèå âàðèàöèîííûõ ïðèáëèæåíèé, ìåòîäû
íà îñíîâå ãàóññîâñêèõ ïðîöåññîâ îñòàþòñÿ âû÷èñëèòåëüíî çàòðàòíûìè ïðè ïðèìåíåíèè
ê áîëüøèì ïðîñòðàíñòâàì ïîèñêà, ñîäåðæàùèì äåñÿòêè òûñÿ÷ âîçìîæíûõ íåéðîñåòåâûé
ìîäåëåé è õàðàêòåðèçóþùèìñÿ âûñîêîé ðàçìåðíîñòüþ ïðèçíàêîâîãî îïèñàíèÿ (ñîòíè ïðè-
çíàêîâ) [16].

Â çàäà÷àõ ïðåäñêàçàíèÿ êà÷åñòâà íåéðîñåòåâûõ ìîäåëåé â ðàìêàõ NAS â êà÷åñòâå
ìîäåëè ïðîãíîçèðîâàíèÿ èñïîëüçóåòñÿ ìíîãîñëîéíûé ïåðöåïòðîí (Multilayer Perceptron,



78 Прикладные информационные технологии

MLP) [17]. Ïðè íàëè÷èè èíôîðìàòèâíîãî ïðèçíàêîâîãî îïèñàíèÿ ìîäåëåé MLP äåìîí-
ñòðèðóåò âûñîêóþ îáîáùàþùóþ ñïîñîáíîñòü è óñòîé÷èâîñòü ê ïåðåîáó÷åíèþ.

Â ðàáîòå [18] ðàññìàòðèâàåòñÿ ïðèìåíåíèå áàéåñîâñêîé ëèíåéíîé ðåãðåññèè äëÿ ïðî-
ãíîçèðîâàíèÿ êà÷åñòâà íåéðîñåòåâûõ ìîäåëåé. Â êà÷åñòâå âõîäíûõ äàííûõ èñïîëüçóþòñÿ
âåêòîðíûå ïðåäñòàâëåíèÿ íåéðîñåòåâûõ ìîäåëåé, âêëþ÷àþùèå èõ ñòðóêòóðíûå õàðàêòå-
ðèñòèêè è ñîîòâåòñòâóþùèå ãèïåðïàðàìåòðû. Â êà÷åñòâå ðàñøèðåíèÿ äàííîãî ïîäõîäà
ïðåäëîæåí ìåòîä DNGO (Deep Networks for Global Optimization) [19], èñïîëüçóþùèé íåé-
ðîííóþ ñåòü â êà÷åñòâå ïðåîáðàçîâàòåëÿ ïðèçíàêîâ. Íåéðîñåòåâûå ìîäåëè è ãèïåðïàðà-
ìåòðû êîäèðóþòñÿ ñ ïîìîùüþ íåéðîííîé ñåòè â âåêòîðíîå ïðåäñòàâëåíèå. Ïîëó÷åííîå
ïðåäñòàâëåíèå ïîäàåòñÿ íà âõîä áàéåñîâñêîé ëèíåéíîé ðåãðåññèè, êîòîðàÿ ïðåäñêàçûâàåò
çíà÷åíèÿ öåëåâîé ôóíêöèè.

Ìåòîä BOHAMIANN (Bayesian Optimization with Hamiltonian Monte-Carlo Arti�cial
Neural Networks) [20], ðåøàåò çàäà÷ó ïðîãíîçà êà÷åñòâà íåéðîñåòåâîé ìîäåëè ñ ïîìîùüþ
áàéåñîâñêîé íåéðîííîé ñåòè, îáó÷åííîé ñ èñïîëüçîâàíèåì ñòîõàñòè÷åñêîãî ãðàäèåíòíîãî
ãàìèëüòîíèàíà Ìîíòå-Êàðëî (Stochastic Gradient Hamiltonian Monte-Carlo, SGHMC). Ìå-
òîä BOHAMIANN ïðèíèìàåò íà âõîä âåêòîðíûå ïðåäñòàâëåíèÿ íåéðîñåòåâîé ìîäåëè è
ïðåäñêàçûâàåò ðàñïðåäåëåíèå çíà÷åíèé öåëåâîé ôóíêöèè, ó÷èòûâàÿ êàê îæèäàåìîå çíà-
÷åíèå, òàê è ñòåïåíü íåîïðåäåëåííîñòè ïðîãíîçà.

Îáùèì íåäîñòàòêîì îïèñàííûõ ïîäõîäîâ ÿâëÿåòñÿ îòñóòñòâèå ÿâíîãî ó÷åòà ñâÿçåé
ìåæäó ñëîÿìè íåéðîñåòåâîé ìîäåëè, ïîñêîëüêó îíè îïèðàþòñÿ íà âåêòîðíûå ïðåäñòàâ-
ëåíèÿ. Äëÿ ôîðìèðîâàíèÿ òàêèõ ïðåäñòàâëåíèé ÷àñòî ïðèìåíÿåòñÿ one-hot êîäèðîâàíèå,
ïðè êîòîðîì êàæäàÿ îïåðàöèÿ (ñâåðòêà, ïóëèíã è äð.) è åå ïîçèöèÿ â íåéðîñåòåâîé ìîäå-
ëè êîäèðóþòñÿ áèíàðíûì âåêòîðîì ôèêñèðîâàííîé äëèíû. Ïîäîáíûå ïðåäñòàâëåíèÿ íå
îòðàæàþò çàâèñèìîñòè ìåæäó ñëîÿìè ìîäåëè, òàêèå êàê ïîðÿäîê ñëîåâ, ïðîïóñêè (skip
connections) è äðóãèå ñëîæíûå ñâÿçè.

Â ðÿäå èññëåäîâàíèé ðàññìàòðèâàåòñÿ ïðèìåíåíèå ìåòîäîâ NAS äëÿ çàäà÷ àíàëèçà
âðåìåííûõ ðÿäîâ. Â ÷àñòíîñòè, AutoCTS (Automated Correlated Time Series) [21] ïðåäíà-
çíà÷åí äëÿ àâòîìàòèçèðîâàííîãî ïîñòðîåíèÿ íåéðîñåòåâûõ ìîäåëåé, ñïîñîáíûõ ó÷èòûâàòü
ïðîñòðàíñòâåííî-âðåìåííûå çàâèñèìîñòè â äàííûõ. Ïðîöåññ ôîðìèðîâàíèÿ ìîäåëè â äàí-
íîì ìåòîäå ñîñòîèò èç äâóõ êëþ÷åâûõ ýòàïîâ. Íà ïåðâîì ýòàïå îñóùåñòâëÿåòñÿ ïîèñê
îïòèìàëüíûõ ìîäóëåé, êîòîðûå ïðåäñòàâëÿþò ñîáîé ñïåöèôè÷åñêèå êîìáèíàöèè ñëîåâ,
ó÷èòûâàþùèõ ðàçëè÷íûå õàðàêòåðèñòèêè âðåìåííûõ ðÿäîâ. Íà âòîðîì ýòàïå âûïîëíÿåò-
ñÿ îïòèìèçàöèÿ êîìïîçèöèè âûáðàííûõ ìîäóëåé äëÿ îïðåäåëåíèÿ íàèáîëåå ýôôåêòèâíîé
ìîäåëè.

Äðóãèì ïðèìåðîì ÿâëÿåòñÿ ìåòîä AutoTS (Automatic Time Series Forecasting) [22],
êîòîðûé ðåøàåò çàäà÷ó àâòîìàòè÷åñêîãî ïðîåêòèðîâàíèÿ íåéðîñåòåâîé ìîäåëè ïðîãíîçè-
ðîâàíèÿ âðåìåííûõ ðÿäîâ. Â ðàññìàòðèâàåìîì ìåòîäå ïðîñòðàíñòâî ïîèñêà ìîäåëè íà-
ñ÷èòûâàåò ïîðÿäêà 1.8×1021 âîçìîæíûõ âàðèàíòîâ. Äëÿ ïîâûøåíèÿ âû÷èñëèòåëüíîé ýô-
ôåêòèâíîñòè ïîèñêà AutoTS ðåàëèçóåò äâóõýòàïíóþ ñòðàòåãèþ ñóæåíèÿ ïðîñòðàíñòâà. Íà
ïåðâîì ýòàïå ïðîâîäèòñÿ ïîýòàïíàÿ îïòèìèçàöèÿ êàæäîãî îòäåëüíîãî ìîäóëÿ. Íà âòîðîì
ýòàïå îñóùåñòâëÿåòñÿ ñóæåíèå ìíîæåñòâà âàðèàíòîâ âíóòðè ìîäåëè.

Ìîæíî çàêëþ÷èòü, ÷òî ñóùåñòâóþùèå ìåòîäû NAS îáëàäàþò îãðàíè÷åííîé ñïîñîá-
íîñòüþ ê àíàëèçó àðõèòåêòóðíûõ îñîáåííîñòåé. Â çàäà÷àõ îáðàáîòêè âðåìåííûõ ðÿäîâ
òàêèå ìåòîäû, êàê ïðàâèëî, îãðàíè÷èâàþòñÿ ñïåöèàëèçèðîâàííûìè òèïàìè ñëîåâ è îáëà-
äàþò âûñîêîðàçìåðíûìè ïðîñòðàíñòâàìè ïîèñêà.
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2. Основные определения и нотация. Временной ряд (time series) 𝑇 äëèíû 𝑛 (îáî-
çíà÷àåìîé êàê |𝑇 |) ïðåäñòàâëÿåò ñîáîé ïîñëåäîâàòåëüíîñòü èç 𝑛 õðîíîëîãè÷åñêè óïîðÿäî-
÷åííûõ âåùåñòâåííûõ çíà÷åíèé:

𝑇 = {𝑡𝑖}𝑛𝑖=1, 𝑡𝑖 ∈ R.

Подпоследовательность (subsequence) 𝑇𝑖,𝑚 âðåìåííîãî ðÿäà 𝑇 ïðåäñòàâëÿåò ñîáîé
íåïðåðûâíîå ïîäìíîæåñòâî 𝑇 èç 𝑚 ýëåìåíòîâ, íà÷èíàÿ ñ ïîçèöèè 𝑖:

𝑇𝑖,𝑚 = {𝑡𝑞}𝑖+𝑚−1
𝑞=𝑖 , 3 ⩽ 𝑚 ≪ 𝑛, 1 ⩽ 𝑖 ⩽ 𝑛−𝑚+ 1.

Многомерный временной ряд � ýòî íàáîð ñåìàíòè÷åñêè ñâÿçàííûõ îäíîìåðíûõ âðå-
ìåííûõ ðÿäîâ îäèíàêîâîé äëèíû, êîòîðûå ñèíõðîíèçèðîâàíû âî âðåìåíè. Ïóñòü 𝑑 îáî-
çíà÷àåò размерность ìíîãîìåðíîãî ðÿäà (𝑑 > 1), êîëè÷åñòâî измерений � îäíîìåðíûõ
ðÿäîâ â íåì. Ïîäîáíî îäíîìåðíîìó ñëó÷àþ, ìíîãîìåðíûé âðåìåííîé ðÿä, åãî ïîäïîñëåäî-
âàòåëüíîñòü è îòäåëüíûå òî÷êè îáîçíà÷èì êàê T, T𝑖,𝑚 è t𝑖 ñîîòâåòñòâåííî, è îïðåäåëèì
èõ ñëåäóþùèì îáðàçîì:

T = [{𝑇 (𝑘)}𝑑𝑘=1]
⊺, T𝑖,𝑚 = [{𝑇 (𝑘)

𝑖,𝑚}𝑑𝑘=1]
⊺, t𝑖 = [{𝑡(𝑘)𝑖 }𝑑𝑘=1]

⊺.

Ïîäïîñëåäîâàòåëüíîñòè âðåìåííîãî ðÿäà T ìîæíî ðàçäåëèòü íà äâà ïîäìíîæåñòâà:
ìíîæåñòâî полных ïîäïîñëåäîâàòåëüíîñòåé, íå ñîäåðæàùèõ ïðîïóùåííûõ çíà÷åíèé S𝑚

T

è ìíîæåñòâî неполных ïîäïîñëåäîâàòåëüíîñòåé, ñîäåðæàùèõ õîòÿ áû îäíî ïðîïóùåííîå
çíà÷åíèå:

S
𝑚
T

=
{︁
T𝑖,𝑚 | ∀𝑡𝑗 ∈ 𝑇

(𝑘)
𝑖,𝑚, 𝑡𝑗 ̸= NaN

}︁
,

∘
S

𝑚
T

=

{︂
∘
T𝑖,𝑚 | ∃

∘
𝑡𝑗 ∈

∘
𝑇

(𝑘)
𝑖,𝑚,

∘
𝑡𝑗 = NaN

}︂
,

ãäå
∘
T𝑖,𝑚 ïðåäñòàâëÿåò ñîáîé ïîäïîñëåäîâàòåëüíîñòü, â êîòîðîé åñòü õîòÿ áû îäíî ïðîïó-

ùåííîå çíà÷åíèå.
Â äîïîëíåíèå ê ïîëíûì è íåïîëíûì ïîäïîñëåäîâàòåëüíîñòÿì âðåìåííîãî ðÿäà T ââå-

äåì ïîíÿòèå âîññòàíîâëåííîé ïîäïîñëåäîâàòåëüíîñòè
∙
T𝑖,𝑚. Âîññòàíîâëåííîé íàçûâàåòñÿ

òàêàÿ ïîäïîñëåäîâàòåëüíîñòü, êîòîðàÿ áûëà ïîëó÷åíà èç íåïîëíîé ïóòåì çàìåíû âñåõ
ïðîïóùåííûõ çíà÷åíèé íà ñèíòåòè÷åñêèå. Îáîçíà÷èì ìíîæåñòâî âñåõ âîññòàíîâëåííûõ

ïîäïîñëåäîâàòåëüíîñòåé êàê
∙
S

𝑚
T
:

∙
S

𝑚
T

=

{︂
∙
T𝑖,𝑚 | ∀

∘
𝑡𝑗 = NaN,

∙
𝑡𝑗 ̸= NaN,

∘
𝑡𝑗 ∈

∘
𝑇

(𝑘)
𝑖,𝑚,

∙
𝑡𝑗 ∈

∙
𝑇

(𝑘)
𝑖,𝑚,

}︂
.

Â äàëüíåéøåì àíàëèçèðóåìóþ íåéðîñåòåâóþ ìîäåëü ìû áóäåì íàçûâàòü öåëåâîé. Це-
левая нейросетевая модель ìîæåò áûòü ôîðìàëüíî ïðåäñòàâëåíà êàê îðèåíòèðîâàííûé
àöèêëè÷åñêèé ãðàô, â êîòîðîì âåðøèíû ñîîòâåòñòâóþò ñëîÿì ìîäåëè, à äóãè ïðåäñòàâ-
ëÿþò ñîáîé íàïðàâëåííûå ñâÿçè ìåæäó ñëîÿìè. Ââåäåì íàáîð ïîíÿòèé äëÿ ôîðìàëüíîãî
ïðåäñòàâëåíèÿ íåéðîñåòåâîé ìîäåëè.

Набор типов слоев 𝒞 ïðåäñòàâëÿåò ñîáîé óïîðÿäî÷åííûé íàáîð èç 𝑐 ýëåìåíòîâ. Êàæ-
äûé ýëåìåíò íàáîðà ïðåäñòàâëÿåò ñîáîé öåëî÷èñëåííûé êîä, ñîîòâåòñòâóþùèé äîïóñòè-
ìîìó òèïó íåéðîñåòåâîãî ñëîÿ èëè îïåðàöèè, èñïîëüçóåìîé â ìîäåëè:
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𝒞 = {𝐶𝑖}𝑐𝑖=1, 𝐶𝑖 ∈ Z.

Äëÿ êàæäîãî äîïóñòèìîãî ýëåìåíòà 𝒞 ìîæåò áûòü çàäàíî äî äâóõ ÷èñëîâûõ ïàðàìåò-
ðîâ, îïðåäåëÿþùèõ åãî êîíôèãóðàöèþ è ôóíêöèîíàëüíûå õàðàêòåðèñòèêè.

Набор функций активации 𝒜 ïðåäñòàâëÿåò ñîáîé óïîðÿäî÷åííûé íàáîð èç 𝑎 ýëåìåí-
òîâ. Êàæäûé ýëåìåíò íàáîðà ïðåäñòàâëÿåò ñîáîé è ñîîòâåòñòâóåò äîïóñòèìîé ôóíêöèè
àêòèâàöèè, ïðèìåíÿåìîé â ñëîÿõ íåéðîííîé ìîäåëè:

𝒜 = {𝐴𝑖}𝑎𝑖=1, 𝐴𝑖 ∈ Z.

Ôîðìàëüíî öåëåâàÿ íåéðîñåòåâàÿ ìîäåëü ìîæåò áûòü ïðåäñòàâëåíà ïàðîé îáúåêòîâ:
óïîðÿäî÷åííûé íàáîð ñëîåâ 𝐿 è ìàòðèöà ñâÿçåé 𝑅 ∈ R𝜆×2. Ðàññìîòðèì êàæäûé ýëåìåíò
áîëåå ïîäðîáíî. Íàáîð ñëîåâ 𝐿 ñîäåðæèò ℓ ÷åòûðåõýëåìåíòíûõ êîðòåæåé, êàæäûé èç êî-
òîðûõ îïèñûâàåò îäèí ñëîé íåéðîííîé ñåòè. Ôîðìàëüíî êàæäûé ñëîé-êîðòåæ ìîæåò áûòü
ïðåäñòàâëåí ñëåäóþùèì îáðàçîì:

𝐿𝑘 = (𝐶𝑖, 𝑝1, 𝑝2, 𝐴𝑗), 1 ⩽ 𝑖 ⩽ 𝑐, 1 ⩽ 𝑗 ⩽ 𝑎, 𝑝1, 𝑝2 ∈ R, 1 ⩽ 𝑘 ⩽ ℓ, 𝐶𝑖 ∈ 𝒞, 𝐴𝑗 ∈ 𝒜,

ãäå 𝐶𝑖 � öåëî÷èñëåííûé êîä òèïà ñëîÿ, 𝑝1 è 𝑝2 � ÷èñëîâûå ïàðàìåòðû ñëîÿ, 𝐴𝑖 � öåëî-
÷èñëåííûé êîä ôóíêöèè àêòèâàöèè.

Ñâÿçè ìåæäó ñëîÿìè íåéðîííîé ìîäåëè çàäàþòñÿ ìàòðèöåé 𝑅, êàæäàÿ ñòðîêà êîòî-
ðîé ñîîòâåòñòâóåò îäíîé äóãå îðèåíòèðîâàííîãî ãðàôà. Äóãà óêàçûâàåò íà íàïðàâëåíèå
ïåðåäà÷è äàííûõ îò îäíîãî ñëîÿ ê äðóãîìó. Êàæäàÿ ñâÿçü îïèñûâàåòñÿ ïàðîé èíäåêñîâ:
èíäåêñ èñõîäíîãî ñëîÿ è èíäåêñ öåëåâîãî ñëîÿ. Ôîðìàëüíî êàæäàÿ ñòðîêà ìàòðèöû ñâÿçåé
ìîæåò áûòü îïðåäåëåíà ñëåäóþùèì îáðàçîì:

𝑅(𝑖,·) = (𝑟𝑗, 𝑟𝑘), 1 ⩽ 𝑖 ⩽ 𝜆, 1 ⩽ 𝑟𝑗, 𝑟𝑘 ⩽ ℓ, 𝑖 < 𝑗,

ãäå 𝑟𝑗 � èíäåêñ ñëîÿ-èñòî÷íèêà, 𝑟𝑘 � èíäåêñ öåëåâîãî ñëîÿ, 𝜆 � îáùèå êîëè÷åñòâî ñâÿçåé
â íåéðîñåòåâîé ìîäåëè.

Ââåäåì îïåðàöèþ ñðåçà slice, êîòîðàÿ çàêëþ÷àåòñÿ â âûäåëåíèè èç èñõîäíîé ìàòðèöû
åå ïîäìàòðèöû, îãðàíè÷åííîé çàäàííûìè äèàïàçîíàìè èíäåêñîâ ñòðîê è ñòîëáöîâ:

slice𝑖:𝑗,𝑘:𝑣 : R
𝑏×𝑞 → R(𝑗−𝑖+1)×(𝑣−𝑘+1),

slice𝑖:𝑗,𝑘:𝑣(𝐴) =

⎡⎢⎢⎢⎣
𝐴𝑖,𝑘 𝐴𝑖,𝑘+1 · · · 𝐴𝑖,𝑣

𝐴𝑖+1,𝑘 𝐴𝑖+1,𝑘+1 · · · 𝐴𝑖+1,𝑣
...

...
. . .

...
𝐴𝑗,𝑘 𝐴𝑗,𝑘+1 · · · 𝐴𝑗,𝑣

⎤⎥⎥⎥⎦ , 1 ⩽ 𝑖 ⩽ 𝑗 ⩽ 𝑏, 1 ⩽ 𝑘 ⩽ 𝑣 ⩽ 𝑞,

ãäå 𝐴 ∈ R𝑏×𝑞 � èñõîäíàÿ ìàòðèöà, [𝑖,𝑗] è [𝑘,𝑣] îáîçíà÷àþò äèàïàçîíû èíäåêñîâ ñòðîê è
ñòîëáöîâ ñîîòâåòñòâåííî. Ðåçóëüòàòîì îïåðàöèè ÿâëÿåòñÿ ìàòðèöà, ñîäåðæàùàÿ ýëåìåíòû
èñõîäíîé ìàòðèöû ñ íîìåðàìè ñòðîê îò 𝑖 äî 𝑗 è ñòîëáöîâ îò 𝑘 äî 𝑣, âêëþ÷èòåëüíî.

×àñòíûì ñëó÷àåì îïåðàöèè ñðåçà ÿâëÿåòñÿ ñðåç ïî ñòîëáöàì slice:,𝑘:𝑣. Ðåçóëüòàòîì òà-
êîé îïåðàöèè ÿâëÿåòñÿ ïîäìàòðèöà, ñîäåðæàùàÿ òå æå ñòðîêè, ÷òî è èñõîäíàÿ ìàòðè-
öà, è òîëüêî òå ñòîëáöû, íîìåðà êîòîðûõ ïðèíàäëåæàò èíòåðâàëó [𝑘,𝑣]. Äðóãèì ÷àñòíûì
ñëó÷àåì ÿâëÿåòñÿ îäíîìåðíûé ñðåç ñòðîêè slice𝑖,𝑘:𝑣, âîçâðàùàþùèé âåêòîð, ñîäåðæàùèé
ýëåìåíòû ñòðîêè 𝑖, ðàñïîëîæåííûå â ñòîëáöàõ ñ íîìåðàìè îò 𝑘 äî 𝑣, âêëþ÷èòåëüíî.
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Рис. 1. Метод прогнозирования ошибки и времени обучения нейросетевой модели восстановления

многомерного временного ряда

3. Метод прогнозирования ошибки и времени обучения нейросетевой моде-
ли. Àðõèòåêòóðà ïðåäëàãàåìîãî ìåòîäà ïðåäñòàâëåíà íà ðèñ. 1 è âêëþ÷àåò ñëåäóþùèå
êîìïîíåíòû, ïîñëåäîâàòåëüíî îáðàáàòûâàþùèå âõîäíûå äàííûå: Àâòîýíêîäåð ãðàôîâîãî
ïðåäñòàâëåíèÿ, Ýíêîäåð ïàðàìåòðîâ îáó÷åíèÿ è Àãðåãàòîð ïðèçíàêîâ. Àâòîýíêîäåð ïðè-
íèìàåò íà âõîä ãðàôîâîå ïðåäñòàâëåíèÿ íåéðîñåòåâîé ìîäåëè, ïðåäñòàâëåííîé äâóìÿ ýëå-
ìåíòàìè: íàáîðîì ñëîåâ 𝐿 è ìàòðèöåé ñâÿçåé 𝑅. Â ïðîöåññå îáðàáîòêè âõîäíûõ äàííûõ
Àâòîýíêîäåð ôîðìèðóåò âåêòîðíîå ïðåäñòàâëåíèå íåéðîñåòåâîé ìîäåëè, îáîçíà÷àåìîå êàê
𝑍 ∈ R𝑧. Ýíêîäåð ïîëó÷àåò íà âõîä âåêòîð ïàðàìåòðîâ îáó÷åíèÿ è ïðåîáðàçóåò åãî â âåê-
òîðíîå ïðåäñòàâëåíèå ïàðàìåòðîâ. Ïîëó÷åííûå âåêòîðíûå ïðåäñòàâëåíèÿ öåëåâîé ìîäåëè
è ïàðàìåòðîâ îáó÷åíèÿ ïåðåäàþòñÿ íà âõîä Àãðåãàòîðó, êîòîðûé íà âûõîäå ïðîäóöèðó-
åò ïðîãíîç â âèäå âåêòîðà èç äâóõ çíà÷åíèé: îøèáêè è âðåìåíè âûïîëíåíèÿ îäíîé ýïîõè
îáó÷åíèÿ.

3.1. Кодирование целевой модели. Â äàííîì ðàçäåëå ðàññìàòðèâàåòñÿ ïðîöåññ ïðèâå-
äåíèÿ ãðàôîâîãî ïðåäñòàâëåíèÿ öåëåâîé ìîäåëè ê âåêòîðíîìó, ñîäåðæàùåìó îñíîâíóþ
èíôîðìàöèþ îá åå îñîáåííîñòÿõ. Îïèñûâàþòñÿ ýòàïû ïðåäâàðèòåëüíîé îáðàáîòêè ñëîåâ
è ñâÿçåé, âêëþ÷àÿ íîðìàëèçàöèþ ïàðàìåòðîâ, one-hot êîäèðîâàíèå êàòåãîðèàëüíûõ ïðè-
çíàêîâ è ôîðìèðîâàíèå âõîäà ìîäåëè. Ðàññìîòðåíà ñòðóêòóðà íåéðîííîé ñåòè, êîòîðàÿ
ðåàëèçóåò êîäèðîâàíèå öåëåâîé ìîäåëè â âåêòîðíîå ïðåäñòàâëåíèå.

3.1.1. Предварительная обработка целевой нейросетевой модели. Ïåðåä ïîäà÷åé íà
âõîä Àâòîýíêîäåðà êàæäûé ñëîé èç íàáîðà ñëîåâ 𝐿 ïðîõîäèò ïðåäâàðèòåëüíóþ îáðàáîò-
êó, âêëþ÷àþùóþ ñëåäóþùèå ýòàïû: çàïîëíåíèå, íîðìàëèçàöèÿ ïàðàìåòðîâ, êîäèðîâàíèå
òèïîâ ñëîåâ è êîäèðîâàíèå ôóíêöèé àêòèâàöèé. Â ðåçóëüòàòå ïðåäâàðèòåëüíîé îáðàáîòêè
íàáîð ñëîåâ 𝐿 ïðåîáðàçóåòñÿ â ìàòðèöó ñëîåâ ̂︀𝐿 ∈ Rℓ×(𝑐+𝑎+2). Íà ýòàïå çàïîëíåíèÿ âõîä-
íîé íàáîð ñëîåâ 𝐿 ïðèâîäèòñÿ ê ôèêñèðîâàííîé äëèíå ℓ ïóòåì äîáàâëåíèÿ ñïåöèàëüíûõ
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ôàíòîìíûõ ñëîåâ ñ òèïîì NONE, îáîçíà÷àþùèõ îòñóòñòâèå ðåàëüíîãî ñëîÿ. Íîâûå ñëîè íå
ñîäåðæàò íè ïàðàìåòðîâ, íè ôóíêöèé àêòèâàöèè.

×èñëîâûå ïàðàìåòðû ñëîÿ 𝑝1 è 𝑝2 ïåðåä ïîäà÷åé íà âõîä íåéðîííîé ñåòè ïîäâåðãàþòñÿ
ìèíèìàêñíîé íîðìàëèçàöèè: ̂︀𝑝 =

𝑝− 𝑝min

𝑝max − 𝑝𝑚𝑖𝑛

, (1)

ãäå 𝑝 � ïàðàìåòð ñëîÿ, 𝑝min è 𝑝max � ìèíèìàëüíîå è ìàêñèìàëüíîå çíà÷åíèÿ äàííîãî
ïàðàìåòðà ñðåäè âñåõ ñëîåâ îäíîãî è òîãî æå òèïà.

Öåëî÷èñëåííûå êîäû òèïà ñëîÿ 𝐶𝑖 è ôóíêöèè àêòèâàöèè 𝐴𝑗 ïðåîáðàçóþòñÿ ñ èñïîëüçî-
âàíèåì one-hot êîäèðîâàíèÿ. Ââåäåì ôóíêöèþ onehot𝑛, êîòîðàÿ îòîáðàæàåò öåëîå ÷èñëî
𝑘 ∈ {0, . . . , 𝑛− 1} â áèíàðíûé âåêòîð äëèíû 𝑛, ãäå åäèíñòâåííàÿ åäèíèöà ðàñïîëîæåíà íà
𝑘-é ïîçèöèè:

onehot𝑛(𝑘) : Z → {0,1}𝑛, onehot𝑛(𝑘)𝑖 =

{︃
1, 𝑖 = 𝑘,

0, èíà÷å.

Íîðìàëèçîâàííûå ïàðàìåòðû, one-hot êîäû òèïîâ ñëîåâ è ôóíêöèé àêòèâàöèè êîíêà-
òåíèðóþòñÿ â âåêòîðà. Ñöåïëåíèå òàêèõ âåêòîðîâ ôîðìèðóåò íîðìàëèçîâàííóþ ìàòðèöó
ñëîåâ ̂︀𝐿. Êàæäàÿ ñòðîêà íîðìàëèçîâàííîé ìàòðèöû ̂︀𝐿 ñîîòâåòñòâóåò îäíîìó ñëîþ è ìîæåò
ôîðìàëüíî ïðåäñòàâëÿòüñÿ ñëåäóþùèì îáðàçîì:̂︀𝐿(𝑘,·) = onehot𝑐(𝐶𝑖) · (̂︀𝑝1,̂︀𝑝2) · onehot𝑎(𝐴𝑗), 1 ⩽ 𝑘 ⩽ ℓ, 1 ⩽ 𝑖 ⩽ 𝑐, 1 ⩽ 𝑗 ⩽ 𝑎,

ãäå ñèìâîë �·� îáîçíà÷àåò îïåðàöèþ êîíêàòåíàöèè.
Àíàëîãè÷íî ìàòðèöå ñëîåâ, ìàòðèöà ñâÿçåé 𝑅 ïðåîáðàçóåòñÿ â íîðìàëèçîâàííóþ ìàò-

ðèöó ñâÿçåé. Äëÿ ïîëó÷åíèÿ íîðìàëèçîâàííîé ìàòðèöû ñâÿçåé ̂︀𝑅 ∈ R𝜆×2ℓ ïðèìåíÿåòñÿ
one-hot êîäèðîâàíèå èíäåêñîâ:̂︀𝑅(𝑘,·) = onehotℓ(𝑅(𝑘,𝑖)) · onehotℓ(𝑅(𝑘,𝑗)), 1 ⩽ 𝑘 ⩽ 𝜆, 1 ⩽ 𝑖,𝑗 ⩽ ℓ. (2)

3.1.2. Формирование векторного представления целевой модели. Äëÿ ôîðìèðîâàíèÿ
âåêòîðíîãî ïðåäñòàâëåíèÿ öåëåâîé ìîäåëè èñïîëüçóåòñÿ íåéðîñåòåâàÿ ìîäåëü íà áàçå àâ-
òîýíêîäåðîâ, ïðåäñòàâëåííàÿ íà ðèñ. 2. Íîðìàëèçîâàííàÿ ìàòðèöà ñëîåâ ̂︀𝐿, èñõîäíàÿ ìàò-
ðèöà ñâÿçåé 𝑅 è åå íîðìàëèçîâàííàÿ âåðñèÿ ̂︀𝑅 ïîäàþòñÿ íà âõîä Àâòîýíêîäåðà, êîòîðûé
ïðåäñòàâëåí íà ðèñ. 2, à. Àâòîýíêîäåð ñîñòîèò èç ÷åòûðåõ ïîäñåòåé. Ïåðâûå äâå ïîäñåòè
ïðåäñòàâëÿþò ñîáîé Ýíêîäåð ñëîåâ è Ýíêîäåð ñâÿçåé, êîòîðûé îòâå÷àåò çà ïîñòðîåíèå
âåêòîðíîãî ïðåäñòàâëåíèÿ öåëåâîé ìîäåëè 𝑍 ∈ R𝑧. Îñòàâøèåñÿ äâå ïîäñåòè ïðåäñòàâëÿþò
ñîáîé Äåêîäåð ñëîåâ è Äåêîäåð ñâÿçåé, êîòîðûå âîññòàíàâëèâàþò ãðàôîâîå ïðåäñòàâëå-
íèÿ ìîäåëè èç âåêòîðíîãî. Â ðåçóëüòàòå ðàáîòû äåêîäåðîâ ôîðìèðóþòñÿ äåêîäèðîâàííûå
âåðñèè ìàòðèöû ñëîåâ ̂︀𝐿*, ìàòðèöû ñâÿçåé 𝑅* è åå íîðìàëèçîâàííîé âåðñèè ̂︀𝑅*.

Ðàññìîòðèì êàæäóþ èç ïîäñåòåé áîëåå ïîäðîáíî. Ýíêîäåð ñâÿçåé ïðèíèìàåò íà âõîä
íîðìàëèçîâàííóþ ìàòðèöó ñâÿçåé ̂︀𝑅 è ïðåîáðàçóåò åå â âåêòîðíîå ïðåäñòàâëåíèå ðàçìåð-
íîñòè 𝑧. Ïðîöåññ ôîðìèðîâàíèÿ âûõîäíîãî âåêòîðà ðåàëèçîâàí ïîñðåäñòâîì ïîñëåäîâà-
òåëüíîãî ïðîõîæäåíèÿ äàííûõ ÷åðåç òðè ïîëíîñâÿçíûõ ñëîÿ. Ïåðâûå äâà ñëîÿ ñîäåðæàò
ïî 2 · 𝜆 · ℓ íåéðîíîâ. Ïîñëåäíèé ñëîé, ñîñòîÿùèé èç 𝑧 íåéðîíîâ, ôîðìèðóåò èòîãîâîå âåê-
òîðíîå ïðåäñòàâëåíèå ñâÿçåé.

Ýíêîäåð ñëîåâ ïðèíèìàåò íà âõîä íîðìàëèçîâàííóþ ìàòðèöó ñëîåâ è ìàòðèöó ñâÿçåé.
Íà âûõîäå äàííîé ïîäñåòè ôîðìèðóåòñÿ âåêòîðíîå ïðåäñòàâëåíèå ñëîåâ. Ïîñêîëüêó öåëå-
âàÿ íåéðîñåòåâàÿ ìîäåëü ïðåäñòàâëÿåòñÿ â âèäå îðèåíòèðîâàííîãî àöèêëè÷åñêîãî ãðàôà,
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Рис. 2. Модель кодирования целевой модели

äëÿ åå îáðàáîòêè èñïîëüçóþòñÿ ãðàôîâûå íåéðîííûå ñåòè. Â ïðåäëàãàåìîì ìåòîäå ïðèìå-
íÿåòñÿ ìîäèôèêàöèÿ ãðàôîâîé ñâåðòî÷íîé ñåòè ñ ìåõàíèçìîì âíèìàíèÿ (Graph Attention
Convolution, GATConv) [23]. Äëÿ ïîëó÷åíèÿ âåêòîðíîãî ïðåäñòàâëåíèÿ ïðèìåíÿåòñÿ ïî-
ñëåäîâàòåëüíîñòü èç ïÿòè GATConv ñëîåâ è îäíîãî ïîëíîñâÿçíîãî ñëîÿ. Ïåðâûå ÷åòûðå
ñëîÿ GATConv îáëàäàþò ðàçìåðíîñòüþ ñêðûòîãî ïðåäñòàâëåíèÿ, ðàâíîé 64, òîãäà êàê
ïîñëåäíèé ñëîé èìååò ðàçìåðíîñòü 32. Â ïåðâîì ñëîå èñïîëüçóåòñÿ 2 ãîëîâû (head), â ïî-
ñëåäóþùèõ ïî îäíîé ãîëîâå. Ïîëíîñâÿçíûé ñëîé, ñîñòîÿùèé èç 𝑧 íåéðîíîâ, ïðèíèìàåò
âûõîä ïîñëåäíåãî GATConv ñëîÿ è ôîðìèðóåò âåêòîðíîå ïðåäñòàâëåíèå ñëîåâ.

Âåêòîðíûå ïðåäñòàâëåíèÿ ñëîåâ è ñâÿçåé öåëåâîé ìîäåëè îáúåäèíÿþòñÿ ñ ïîìîùüþ
îïåðàöèè êîíêàòåíàöèè. Ïîëó÷åííûé âåêòîð ïîäàåòñÿ íà âõîä ïîëíîñâÿçíîãî ñëîÿ ñ âû-
õîäíîé ðàçìåðíîñòüþ 𝑧, êîòîðûé ôîðìèðóåò èòîãîâîå âåêòîðíîå ïðåäñòàâëåíèå ìîäåëè,
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îáîçíà÷àåìîå êàê 𝑍. Âî âñåõ óïîìÿíóòûõ ñëîÿõ â êà÷åñòâå ôóíêöèè àêòèâàöèè èñïîëüçó-
åòñÿ Exponential Linear Unit (ELU) [24].

Äëÿ äåêîäèðîâàíèÿ öåëåâîé ìîäåëè âåêòîðíîå ïðåäñòàâëåíèå 𝑍 ïîñòóïàåò íà âõîä îä-
íîìó ïîëíîñâÿçíîìó ñëîþ, ñîäåðæàùåìó 𝑧 íåéðîíîâ, êîòîðûé ôîðìèðóåò äåêîäèðîâàííóþ
âåðñèþ äàííîãî ïðåäñòàâëåíèÿ. Âûõîä äàííîãî ñëîÿ ïîñòóïàåò íà âõîä Äåêîäåðó ñëîåâ è
Äåêîäåðó ñâÿçåé.

Äåêîäåð ñâÿçåé ñ ïîìîùüþ òðåõ ïîñëåäîâàòåëüíî ïðèìåíÿåìûõ ïîëíîñâÿçíûõ ñëîåâ
ôîðìèðóåò äåêîäèðîâàííóþ ìàòðèöó ñâÿçåé 𝑅* ∈ R𝜆×2. Êàæäûé èç ýòèõ ñëîåâ ñîäåðæèò
2 · 𝜆 · ℓ íåéðîíà. Â êà÷åñòâå ôóíêöèè àêòèâàöèè äëÿ ïåðâûõ äâóõ ñëîåâ èñïîëüçóåòñÿ
Exponential Linear Unit (ELU), òîãäà êàê ôóíêöèåé àêòèâàöèè ïîñëåäíåãî ñëîÿ ÿâëÿåòñÿ

softmax. Íà âûõîäå ïîäñåòè ôîðìèðóåòñÿ äåêîäèðîâàííàÿ ìàòðèöà ̂︀𝑅*, â êîòîðîé êàæäàÿ
ñòðîêà ïðåäñòàâëÿåò ñîáîé êîíêàòåíàöèþ äâóõ âåêòîðîâ äëèíû ℓ. Ïåðâûé âåêòîð ñîäåðæèò
âåðîÿòíîñòè òîãî, ÷òî ñîîòâåòñòâóþùèé ñëîé âûñòóïàåò èñòî÷íèêîì äàííûõ â ñâÿçè, à
âòîðîé âåðîÿòíîñòè ó÷àñòèÿ êàæäîãî ñëîÿ â êà÷åñòâå öåëåâîãî. Äëÿ ïîëó÷åíèÿ èòîãîâîé
äåêîäèðîâàííîé ìàòðèöû ñâÿçåé 𝑅* ê êàæäîìó òàêîìó âåêòîðó ïðèìåíÿåòñÿ îïåðàöèÿ
argmax. Äàííàÿ îïåðàöèÿ ïðåîáðàçóåò âåðîÿòíîñòíûå îöåíêè â èíäåêñû, âûáèðàÿ äëÿ
êàæäîé ñâÿçè íàèáîëåå âåðîÿòíûå íà÷àëüíûé è öåëåâîé ñëîè.

Íà âõîä Äåêîäåðà ñëîåâ ïîäàåòñÿ äåêîäèðîâàííàÿ âåðñèÿ âåêòîðíîãî ïðåäñòàâëåíèÿ
è äåêîäèðîâàííàÿ ìàòðèöà ñâÿçåé 𝑅*. Íà ïåðâîì ýòàïå äåêîäèðîâàíèÿ âåêòîðíîå ïðåä-
ñòàâëåíèå îáðàáàòûâàåòñÿ ïîëíîñâÿçíûì ñëîåì, ñîäåðæàùèì 32 · ℓ íåéðîíîâ. Äàëåå, ñ ïî-
ìîùüþ ïÿòè ïîñëåäîâàòåëüíî ïðèìåíÿåìûõ ãðàôîâûõ ñëîåâ GATConv, íà îñíîâå âûõîäà
ïðåäûäóùåãî ñëîÿ è äåêîäèðîâàííîé ìàòðèöû ñâÿçåé ôîðìèðóåòñÿ äåêîäèðîâàííàÿ ìàò-
ðèöà ñëîåâ ̂︀𝐿*. Ïåðâûå ÷åòûðå ñëîÿ èìåþò ðàçìåð ñêðûòîãî ïðåäñòàâëåíèÿ, ðàâíûé 64.
Ïîñëåäíèé ñëîé ôîðìèðóåò îêîí÷àòåëüíîå ïðåäñòàâëåíèå ñëîåâ è èìååò ðàçìåð ñêðûòîãî
ïðåäñòàâëåíèÿ, ðàâíûé 𝑐+ 𝑎+2. Âî âòîðîì GATConv èñïîëüçóåòñÿ 2 ãîëîâû âíèìàíèÿ, â
îñòàëüíûõ èñïîëüçóåòñÿ ïî îäíîé. Â êà÷åñòâå ôóíêöèè àêòèâàöèè äëÿ âñåõ ñëîåâ, êðîìå
ïîñëåäíåãî, ïðèìåíÿåòñÿ ELU.

Ôóíêöèÿ àêòèâàöèè ïîñëåäíåãî ñëîÿ ÿâëÿåòñÿ ñîñòàâíîé. Ïóñòü âûõîä ïîñëåäíåãî ñëîÿ
èìååò âèä ìàòðèöû 𝑂 ∈ Rℓ×(𝑐+𝑎+2), ãäå êàæäàÿ ñòðîêà ñîîòâåòñòâóåò îäíîìó ñëîþ íåéðîñå-
òåâîé ìîäåëè, à ñòîëáöû ïðåäñòàâëÿþò ñîáîé ðàçëè÷íûå äåêîäèðîâàííûå õàðàêòåðèñòèêè
ñëîÿ. Ê ïåðâûì 𝑐 ñòîëáöàì êàæäîé ñòðîêè ïðèìåíÿåòñÿ ôóíêöèÿ softmax äëÿ ïîëó÷åíèÿ
ðàñïðåäåëåíèÿ âåðîÿòíîñòåé ïðèíàäëåæíîñòè ñëîÿ ê ðàçëè÷íûì òèïàì èç íàáîðà 𝒞. Ñëå-
äóþùèå äâà ñòîëáöà êàæäîé ñòðîêè ñîäåðæàò ÷èñëîâûå ïàðàìåòðû ñëîÿ, ê êîòîðûì íå
ïðèìåíÿåòñÿ ôóíêöèÿ àêòèâàöèè. Ïîñëåäíèå 𝑎 ñòîëáöîâ êàæäîé ñòðîêè ñîäåðæàò çíà÷å-
íèÿ, êîòîðûå ïîñëå ïðèìåíåíèÿ ôóíêöèè softmax ïðåîáðàçóþòñÿ â çíà÷åíèÿ, îòðàæàþùèå
âåðîÿòíîñòü íàëè÷èÿ ó äàííîãî ñëîÿ ôóíêöèè àêòèâàöèè èç íàáîðà 𝒜. Ôîðìàëüíî ñòðîêà
äåêîäèðîâàííîé ìàòðèöû ñëîåâ ̂︀𝐿* ìîæåò áûòü ïðåäñòàâëåíà ñëåäóþùèì îáðàçîì:̂︀𝐿*(𝑖,·) = softmax(slice𝑖,1:𝑐(𝑂)) · slice𝑖,𝑐:𝑤(𝑂) · softmax(slice𝑖,𝑤+1:𝑠(𝑂)),

1 ⩽ 𝑖 ⩽ ℓ, 𝑤 = 𝑐+ 2, 𝑠 = 𝑐+ 𝑎+ 2,
(3)

ãäå ôóíêöèÿ softmax : R𝑚 → R𝑚 äëÿ âåêòîðà 𝑋 = (𝑥1, . . . , 𝑥𝑚) îïðåäåëÿåòñÿ ñëåäóþùèì
îáðàçîì:

softmax(𝑋)𝑗 =
𝑒𝑥𝑗∑︀𝑚
𝑘=1 𝑒

𝑥𝑘
, 1 ⩽ 𝑗 ⩽ 𝑚.

3.2. Формирование векторного представления параметров обучения. Íà ðèñ. 3 ïðåä-
ñòàâëåíà àðõèòåêòóðà Ýíêîäåðà ïàðàìåòðîâ îáó÷åíèÿ. Íà âõîä Ýíêîäåðó ïîñòóïàåò âåêòîð
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𝐺 ∈ R10, ñîäåðæàùèé ñîâîêóïíîñòü ÷èñëîâûõ ïðèçíàêîâ äâóõ êàòåãîðèé: ãèïåðïàðàìåòðû
îáó÷åíèÿ è õàðàêòåðèñòèêè âû÷èñëèòåëüíîãî óñòðîéñòâà, íà êîòîðîì îñóùåñòâëÿåòñÿ îáó-
÷åíèå ìîäåëè. Ñïèñîê ïàðàìåòðîâ, ïîäàâàåìûõ íà âõîä, âêëþ÷àåò ñëåäóþùèå ýëåìåíòû:
äëèíà ïîäïîñëåäîâàòåëüíîñòè, êîëè÷åñòâî êîîðäèíàò, ñêîðîñòü îáó÷åíèÿ, îáúåì äîñòóï-
íîé âèäåîïàìÿòè, ïðîïóñêíàÿ ñïîñîáíîñòü ïàìÿòè, êîëè÷åñòâî òåíçîðíûõ ÿäåð, ïðîèçâî-
äèòåëüíîñòü óñêîðèòåëÿ, êîëè÷åñòâî CUDA-ÿäð, òàêòîâàÿ ÷àñòîòà, âåðñèÿ àðõèòåêòóðû
(CUDA Capability).

Àðõèòåêòóðà Ýíêîäåðà âêëþ÷àåò ñëåäóþùèå ïîñëåäîâàòåëüíî ïðèìåíÿåìûå ñëîè: ñëîé
ñ ìíîãîãîëîâûì ìåõàíèçìîì âíèìàíèÿ (multi-head attention) è äâà ïîëíîñâÿçíûõ ñëîÿ. Ìå-
õàíèçì âíèìàíèÿ èñïîëüçóåòñÿ äëÿ âûÿâëåíèÿ âçàèìîñâÿçåé ìåæäó êîìïîíåíòàìè âåêòî-
ðà 𝐺 è îïðåäåëåíèÿ èõ çíà÷èìîñòè ïðè ôîðìèðîâàíèè èòîãîâîãî ïðåäñòàâëåíèÿ. Ðàçìåð
ñêðûòîãî ïðåäñòàâëåíèÿ â ñëîå ñ âíèìàíèåì ñîñòàâëÿåò 10, êîëè÷åñòâî ãîëîâ ðàâíî 2.
Ïîëíîñâÿçíûå ñëîè ñîäåðæàò ïî 10 íåéðîíîâ êàæäûé è ôîðìèðóþò âåêòîðíîå ïðåäñòàâ-
ëåíèå ïàðàìåòðîâ îáó÷åíèÿ. Â êà÷åñòâå ôóíêöèè àêòèâàöèè âî âñåõ ïîëíîñâÿçíûõ ñëîÿõ
èñïîëüçóåòñÿ Recti�ed Linear Unit (ReLU) [25].

3.3. Формирование прогноза. Íà ðèñ. 4 ïðåäñòàâëåíà àðõèòåêòóðà íåéðîñåòåâîé ìîäåëè,
ðåàëèçóþùåé Àãðåãàòîð. Â êà÷åñòâå âõîäíûõ äàííûõ Àãðåãàòîð ïîëó÷àåò âåêòîðíûå ïðåä-
ñòàâëåíèÿ öåëåâîé íåéðîñåòåâîé ìîäåëè è ïàðàìåòðîâ åå îáó÷åíèÿ. Íà âûõîäå Àãðåãàòîðà
ôîðìèðóþòñÿ âåêòîð 𝑉 ∈ R2, êîòîðûé ñîäåðæèò ïðîãíîçèðóåìûå çíà÷åíèÿ õàðàêòåðèñòèê
êà÷åñòâà ìîäåëè.

Ïåðåä ïîäà÷åé íà âõîä Àãðåãàòîðó âåêòîðíûå ïðåäñòàâëåíèÿ îáúåäèíÿþòñÿ ïîñðåä-
ñòâîì êîíêàòåíàöèè â âåêòîð äëèíû 𝑧 + 10. Ïîëó÷åííûé âåêòîð îáðàáàòûâàåòñÿ ïîñëåäî-
âàòåëüíîñòüþ íåéðîñåòåâûõ ñëîåâ, âêëþ÷àþùåé îäèí ñëîé ñ ìåõàíèçìîì âíèìàíèÿ è ïÿòü
ïîëíîñâÿçíûõ ñëîåâ. Ñêðûòîå ñîñòîÿíèå ñëîÿ âíèìàíèÿ èìååò ðàçìåðíîñòü 𝑧 + 10. Èçâëå-
÷åííûå äàííûì ñëîåì ïðèçíàêè îáðàáàòûâàþòñÿ ïîñëåäîâàòåëüíîñòüþ èç ïÿòè ïîëíîñâÿç-
íûõ ñëîåâ, ôîðìèðóþùèõ ïðîãíîç êà÷åñòâà ìîäåëè. Ïåðâûå ÷åòûðå ñëîÿ ñîäåðæàò ïî 200
íåéðîíîâ è èñïîëüçóþò ôóíêöèþ àêòèâàöèè ELU. Ïîñëåäíèé ñëîé ñîñòîèò èç äâóõ íåé-
ðîíîâ, ñîîòâåòñòâóþùèõ êîëè÷åñòâó ïðåäñêàçûâàåìûõ âåëè÷èí, è ôîðìèðóåò âûõîäíîé
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âåêòîð 𝑉 . Ïåðâûé ýëåìåíò âåêòîðà 𝑉 èíòåðïðåòèðóåòñÿ êàê îæèäàåìàÿ îøèáêà ìîäåëè,
âòîðîé êàê ïðîãíîç âðåìåíè îáó÷åíèÿ íà îäíîé ýïîõè.

Ìåæäó ñëîåì ñ ìåõàíèçìîì âíèìàíèÿ è ïîñëåäîâàòåëüíîñòüþ èç ÷åòûðåõ ïåðâûõ ïîë-
íîñâÿçíûõ ñëîåâ ðåàëèçîâàíî îñòàòî÷íîå ñîåäèíåíèå (residual connection) [26]. Äëÿ ïîâû-
øåíèÿ îáîáùàþùåé ñïîñîáíîñòè ìîäåëè ê ïîëíîñâÿçíûå ñëîÿì ïðèìåíÿåòñÿ ïðîðåæèâà-
íèå (Dropout) [27].

3.4. Обучение модели.
3.4.1. Формирование обучающей выборки. Äëÿ îáó÷åíèÿ îïèñàííîé âûøå ìîäå-

ëè èñïîëüçóåòñÿ óïîðÿäî÷åííûé íàáîð èç 𝑛 ÷åòûðåõýëåìåíòíûõ êîðòåæåé 𝑀 =
{(̂︀𝐿𝑖, 𝑅,𝐺, 𝑉𝑖)}𝑛𝑖=1, ãäå ̂︀𝐿𝑖 � ìàòðèöû ñëîåâ, 𝑅𝑖 � ìàòðèöà ñâÿçåé ìåæäó ñëîÿìè, 𝐺𝑖 �
âåêòîð ïàðàìåòðîâ îáó÷åíèÿ, 𝑉𝑖 � âåêòîð çíà÷åíèé êà÷åñòâà ìîäåëè. Êàæäûé ýëåìåíò
(̂︀𝐿𝑖, 𝑅,𝐺, 𝑉𝑖) îïèñûâàåò îäíó íåéðîñåòåâóþ ìîäåëü, èñïîëüçóåìóþ äëÿ îáó÷åíèÿ. Äëÿ êàæ-
äîãî ýëåìåíòà èç íàáîðà 𝑀 ïðåäïîëàãàåòñÿ, ÷òî áûëà ïðîâåäåíà ïðîöåäóðà îáó÷åíèÿ öå-
ëåâîé ìîäåëè, çàäàâàåìîé ìàòðèöàìè ̂︀𝐿𝑖 è 𝑅𝑖, ñ èñïîëüçîâàíèåì ïàðàìåòðîâ îáó÷åíèÿ 𝐺𝑖.
Ïî ðåçóëüòàòàì îáó÷åíèÿ è ïîñëåäóþùåãî òåñòèðîâàíèÿ íà âàëèäàöèîííîé âûáîðêå áûë
ïîëó÷åí âåêòîð îöåíêè 𝑉𝑖.

Ïåðåä èñïîëüçîâàíèåì íàáîðà 𝑀 äëÿ îáó÷åíèÿ ìîäåëè ïðîèçâîäèòñÿ ïðåäâàðèòåëüíàÿ
îáðàáîòêà, âêëþ÷àþùàÿ ñëåäóþùèå ýòàïû: íîðìàëèçàöèÿ, î÷èñòêà è ôîðìèðîâàíèå âû-
áîðîê. Âåêòîðû êà÷åñòâà ìîäåëåé 𝑉𝑖 ïîäâåðãàþòñÿ ïðîöåäóðå íîðìàëèçàöèè, âêëþ÷àþùåé
äâà ïîñëåäîâàòåëüíûõ ïðåîáðàçîâàíèÿ. Íà ïåðâîì ýòàïå ê êàæäîìó ýëåìåíòó âåêòîðà ïðè-
ìåíÿåòñÿ ëîãàðèôìè÷åñêîå ïðåîáðàçîâàíèå. Ñ öåëüþ ïðåäîòâðàùåíèÿ íåîïðåäåëåííîñòåé,
âîçíèêàþùèõ ïðè íàëè÷èè íóëåâûõ çíà÷åíèé, ê êàæäîìó ýëåìåíòó ïðåäâàðèòåëüíî ïðè-
áàâëÿåòñÿ åäèíèöà. Íà âòîðîì ýòàïå îñóùåñòâëÿåòñÿ 𝑧-íîðìàëèçàöèÿ. Íîðìàëèçîâàííîå
çíà÷åíèå 𝑣𝑗 ∈ 𝑉𝑖 âû÷èñëÿåòñÿ íà îñíîâå ñëåäóþùåé ôîðìóëû:

𝑣𝑗 𝑖 =
log(𝑣𝑗 + 1)− 𝜇𝑗

𝜎𝑗

, 1 ⩽ 𝑗 ⩽ |𝑉𝑖|,

ãäå 𝑣𝑗 � èñõîäíîå çíà÷åíèå ïîêàçàòåëÿ êà÷åñòâà, 𝜇𝑗 è 𝜎𝑗 � ñðåäíåå çíà÷åíèå è ñòàíäàðòíîå
îòêëîíåíèå, âû÷èñëåííûå ïî âñåì çíà÷åíèÿì äàííîãî ïîêàçàòåëÿ â íàáîðå 𝑀 .

Îáó÷àþùàÿ âûáîðêà ïðåäñòàâëÿåò ñîáîé íàáîð ïðèìåðîâ, íà êîòîðûõ ìîäåëü îáó÷àåòñÿ
âûÿâëÿòü çàâèñèìîñòè ìåæäó âõîäíûìè è âûõîäíûìè äàííûìè. Â äàëüíåéøåì îáó÷àþ-
ùóþ âûáîðêó áóäåì îáîçíà÷àòü êàê 𝐷 = ⟨X,Y⟩, ãäå X è Y ïðåäñòàâëÿþò ñîáîé âõîäíûå è
âûõîäíûå äàííûå ìîäåëè ñîîòâåòñòâåííî. Âõîäíûìè äàííûìè ÿâëÿåòñÿ êîðòåæ, âêëþ÷àþ-
ùèé ãðàôîâîå ïðåäñòàâëåíèå öåëåâîé ìîäåëè è âåêòîð ïàðàìåòðîâ îáó÷åíèÿ 𝐺𝑖. Îïèñàíèå
öåëåâîé ìîäåëè ïåðåäàåòñÿ â âèäå íîðìàëèçîâàííîé ìàòðèöû ñëîåâ ̂︀𝐿𝑖 è ìàòðèöû ñâÿçåé
𝑅𝑖. Âûõîäíûìè ïîëàãàþòñÿ ñëåäóþùèå äàííûå: êîðòåæ, ñîäåðæàùèé ïîäàâàåìóþ íà âõîä
öåëåâóþ ìîäåëü, è âåêòîð ïàðàìåòðîâ êà÷åñòâà 𝑉𝑖. Ôîðìàëüíî îáó÷àþùàÿ âûáîðêà ìîæåò
áûòü ïðåäñòàâëåíà ñëåäóþùèé îáðàçîì:

𝐷 = {⟨X,Y⟩ | 𝑌𝑖 = (̂︀𝐿𝑖, 𝑅𝑖, 𝑉𝑖), 𝑋𝑖 = (̂︀𝐿𝑖, 𝑅𝑖, 𝐺𝑖), 1 ⩽ 𝑖 ⩽ 𝑛}. (4)

Ïðåäïîëàãàåòñÿ, ÷òî â ïðîöåññå ðàáîòû ìîäåëü, ïîëó÷àÿ íà âõîä ýëåìåíòû âõîäíûõ
äàííûõ 𝑋𝑖, ôîðìèðóåò âûõîäíûå äàííûå â âèäå êîðòåæà 𝑌 *

𝑖 = (̂︀𝐿*
𝑖 , 𝑅

*
𝑖 , 𝑉

*
𝑖 ), âêëþ÷àþùåãî

äåêîäèðîâàííóþ ìàòðèöó ñëîåâ ̂︀𝐿*
𝑖 , äåêîäèðîâàííóþ ìàòðèöó ñâÿçåé 𝑅*

𝑖 è ïðîãíîçèðóåìûå
ïîêàçàòåëè êà÷åñòâà 𝑉 *

𝑖 .
3.4.2. Вычисление ошибки. Îøèáêà E ïðåäñòàâëÿåò ñîáîé ñîñòàâíóþ âåëè÷èíó è îïðå-

äåëÿåòñÿ êàê âçâåøåííàÿ ñóììà íåñêîëüêèõ êîìïîíåíò, êàæäàÿ èç êîòîðûõ îòâå÷àåò çà
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îöåíêó îòêëîíåíèÿ ìîäåëè ïî îäíîìó èç ïðîäóöèðóåìûõ çíà÷åíèé. Ïóñòü ℰ = {𝐸𝑖}err𝑖=1 �
íàáîð îøèáîê, ãäå 𝐸𝑖 îáîçíà÷àåò çíà÷åíèå 𝑖-é êîìïîíåíòíîé îøèáêè, err � îáùåå êîëè÷å-
ñòâî òàêèõ êîìïîíåíò. Êàæäîé êîìïîíåíòå ñîïîñòàâëÿåòñÿ âåñîâîé êîýôôèöèåíò, îòðàæà-
þùèé åå âêëàä â èòîãîâóþ îøèáêó. Ñîâîêóïíîñòü âåñîâ çàäàåòñÿ âåêòîðîì 𝑊 = {𝑤𝑖}err𝑖=1,
𝑤𝑖 ∈ R. Ñóììàðíàÿ îøèáêà ìîäåëè îïðåäåëÿåòñÿ ñëåäóþùèì îáðàçîì:

E =
err∑︁
𝑖=1

𝑤𝑖 · 𝐸𝑖.

Ñîñòàâíûå ÷àñòè îáùåé îøèáêè ìîæíî ðàçäåëèòü íà òðè ãðóïïû: âåðîÿòíîñòíûå îøèá-
êè, îøèáêè êëàññèôèêàöèè è îøèáêè ðåãðåññèè. Ê âåðîÿòíîñòíûì îøèáêàì îòíîñèòñÿ
îøèáêà íàëè÷èÿ ñâÿçè ìåæäó ñëîÿìè 𝐸edge. Ê îøèáêàì êëàññèôèêàöèè îòíîñÿòñÿ ïðîãíîç
òèïà ñëîÿ 𝐸layer è ïðîãíîç òèïà àêòèâàöèè ñëîÿ 𝐸activate. Ê îøèáêàì ðåãðåññèè îòíîñÿòñÿ
ïðîãíîç ïàðàìåòðîâ ñëîåâ 𝐸params, ïðîãíîç îøèáêè 𝐸error è âðåìåíè îáó÷åíèÿ 𝐸time öåëåâîé
ìîäåëè.

Îøèáêà ïðîãíîçà ñëîÿ 𝐸layer îïðåäåëÿåòñÿ ñ ïîìîùüþ ôóíêöèè êðîññ-ýíòðîïèè [28],
âû÷èñëÿþùåé ðàñõîæäåíèå ìåæäó èñòèííûì (one-hot) è ïðåäñêàçàííûì ðàñïðåäåëåíè-
ÿìè âåðîÿòíîñòåé ïðèíàäëåæíîñòè ê êëàññàì. Ñîãëàñíî ôîðìóëå (3), èñòèííîå è ïðåä-

ñêàçàííîå ðàñïðåäåëåíèÿ ðàñïîëîæåíû â ïåðâûõ 𝑐 ñòîëáöàõ ìàòðèö ̂︀𝐿 è ̂︀𝐿*. Àíàëîãè÷íî,
îøèáêà ïðîãíîçà ôóíêöèè àêòèâàöèè ñëîÿ 𝐸activate îïðåäåëÿåòñÿ êàê çíà÷åíèå ôóíêöèè
êðîññ-ýíòðîïèè, âû÷èñëåííîé ìåæäó èñòèííûìè è ïðåäñêàçàííûìè ðàñïðåäåëåíèÿìè âå-
ðîÿòíîñòåé ïî òèïàì ôóíêöèè ïîòåðü, êîòîðûå ðàñïîëîæåííûå â ïîñëåäíèõ 𝑎 ñòîëáöàõ ̂︀𝐿
è ̂︀𝐿*.

𝐸layer = −1

ℓ

ℓ∑︁
𝑖=1

𝑐∑︁
𝑗=1

̂︀𝐿(𝑖,𝑗) log ̂︀𝐿*(𝑖,𝑗), 𝐸activate = −1

ℓ

ℓ∑︁
𝑖=1

𝑐+2+𝑎∑︁
𝑗=𝑐+3

̂︀𝐿(𝑖,𝑗) log ̂︀𝐿*(𝑖,𝑗).

Îøèáêà ïðîãíîçà íàëè÷èÿ ñâÿçåé ìåæäó ñëîÿìè îïðåäåëÿåòñÿ ñ ïîìîùüþ áèíàðíîé
êðîññ-ýíòðîïèè (binary cross entropy, BCE). Äàííóþ îøèáêó ìîæíî èíòåðïðåòèðîâàòü êàê
ìåðó ðàñõîæäåíèÿ ìåæäó ïðåäñêàçàííûìè è èñòèííûìè âåðîÿòíîñòÿìè ó÷àñòèÿ êàæäîãî
ñëîÿ â êîíêðåòíîé ñâÿçè. Èñòèííûå è ïðåäñêàçàííûå âåðîÿòíîñòè ïðåäñòàâëÿþò ñîáîé
ìàòðèöû ̂︀𝑅 è ̂︀𝑅*. Ïðåäïîëàãàåòñÿ, ÷òî èñòèííûå âåðîÿòíîñòè áûëè ïîëó÷åíû ïîñëå one-
hot êîäèðîâàíèÿ èíäåêñà ñëîÿ ó÷àñòíèêà ñâÿçè (ñì. ôîðìóëó 2), òîãäà êàê ïðåäñêàçàííûå
áûëè ñôîðìèðîâàíû ìîäåëüþ. Ôîðìàëüíî îøèáêà ïðîãíîçà íàëè÷èÿ ñâÿçåé ìîæåò áûòü
ïðåäñòàâëåíà ñëåäóþùèì îáðàçîì:

𝐸edge =
1

𝜆

𝜆∑︁
𝑖=1

2·ℓ∑︁
𝑗=1

̂︀𝑅(𝑖,𝑗) log ̂︀𝑅*(𝑖,𝑗) + (1− ̂︀𝑅(𝑖,𝑗)) log
(︁
1− ̂︀𝑅*(𝑖,𝑗)

)︁
.

Äëÿ âû÷èñëåíèÿ îøèáîê ðåãðåññèè èñïîëüçóåòñÿ ôóíêöèÿ ïîòåðü Õóáåðà (Huber
loss) [29], êîòîðàÿ îöåíèâàåò ðàññòîÿíèå ìåæäó èñòèííûìè çíà÷åíèÿìè è ïðåäñêàçàííûìè
ìîäåëüþ. Â ñîîòâåòñòâèè ñ ôîðìóëîé (3), ïðè âû÷èñëåíèè îøèáêè ïðîãíîçà ïàðàìåòðîâ
íåéðîñåòåâûõ ñëîåâ 𝐸params èñòèííûå çíà÷åíèÿ áåðóòñÿ èç äèàïàçîíà ñòîëáöîâ [𝑐+1, 𝑐+2]

ìàòðèö ̂︀𝐿 è ̂︀𝐿*. Â ñëó÷àå îøèáîê ïðîãíîçà òî÷íîñòè 𝐸error è âðåìåíè âûïîëíåíèÿ 𝐸time

èñòèííûå çíà÷åíèÿ ïðåäñòàâëåíû ïåðâûì è âòîðûì ñòîëáöàìè ìàòðèöû 𝑉 , à ïðåäñêàçàí-
íûå ñîîòâåòñòâóþùèìè ñòîëáöàìè ìàòðèöû 𝑉 *. Ôîðìàëüíî îøèáêè äàííîé ãðóïïû ìîãóò
áûòü îáîçíà÷åíû ñëåäóþùèì îáðàçîì:



88 Прикладные информационные технологии

Таблица 1
Аппаратная платформа для экспериментов

Характеристики CPU GPU (V100) GPU (RTX 3060)

Бренд и серия Intel Xeon NVIDIA Volta NVIDIA Ampere
Модель E5-2687W v2 V100 RTX 3060
Количество ядер 8 5 120 3 584
Тактовая частота, ГГц 3,40 1,53 1,78
Память, ГБ 16 32 12

𝐸params =
1

ℓ

ℓ∑︁
𝑖=1

HuberLoss(slice𝑖, 𝑐+1:𝑣(̂︀𝐿), slice𝑖, 𝑐+1:𝑣(̂︀𝐿*)), 𝑣 = 𝑐+ 2,

𝐸error =
1

ℓ

𝑐∑︁
𝑖=1

HuberLoss(𝑉 (𝑖,1), 𝑉 *(𝑖,1)), 𝐸time =
1

ℓ

ℓ∑︁
𝑖=1

HuberLoss(𝑉 (𝑖,2), 𝑉 *(𝑖,2)),

ãäå ôóíêöèÿ ïîòåðü Õóáåðà HuberLoss : R𝑞 ×R𝑞 → R èìååò ñëåäóþùèé âèä:

HuberLoss(x,y) =

𝑞∑︁
𝑘=1

ℎ(𝑥𝑘, 𝑦𝑘), ℎ(𝑥,𝑦) =

{︃
1
2
(𝑥− 𝑦)2, åñëè |𝑥− 𝑦| ≤ 𝛿,

𝛿 · (|𝑥− 𝑦| − 1
2
𝛿), èíà÷å,

,

x,y ∈ R𝑞, 𝛿 > 0.

4. Вычислительные эксперименты. Äëÿ èññëåäîâàíèÿ ýôôåêòèâíîñòè ïðåäëîæåí-
íîãî ìåòîäà áûëè ïðîâåäåíû âû÷èñëèòåëüíûå ýêñïåðèìåíòû, â êîòîðûõ èñïîëüçîâàëîñü
îáîðóäîâàíèå Ëàáîðàòîðèè ñóïåðêîìïüþòåðíîãî ìîäåëèðîâàíèÿ ÞÓðÃÓ [30]. Â òàáë. 1
ïðèâåäåíû õàðàêòåðèñòèêè îáîðóäîâàíèÿ, çàäåéñòâîâàííîãî ïðè èññëåäîâàíèè ïðîñòðàí-
ñòâà ïîèñêà è îáó÷åíèÿ ìîäåëåé ïðåäñêàçàíèÿ êà÷åñòâà íåéðîñåòåâûõ ìîäåëåé. Âû÷èñëè-
òåëüíûå ýêñïåðèìåíòû, ñâÿçàííûå ñ èññëåäîâàíèåì ïðîñòðàíñòâà ïîèñêà, îñóùåñòâëÿëèñü
â òå÷åíèå òðåõ ìåñÿöåâ.

4.1. Пространство поиска. Â ðàìêàõ äàííîãî èññëåäîâàíèÿ öåëåâîé ìîäåëüþ, îïòè-
ìèçèðóåìîé â õîäå íåéðîñåòåâîãî ïîèñêà, âûñòóïàåò ìîäåëü, àïïðîêñèìèðóþùàÿ ôóíê-
öèþ âîññòàíîâëåíèÿ âðåìåííîãî ðÿäà. Öåëåâàÿ ìîäåëü ðåàëèçóåò ïðîöåññ ïðåîáðàçîâàíèÿ

íåïîëíûõ ïîäïîñëåäîâàòåëüíîñòåé
∘
T𝑖,𝑚 â âîññòàíîâëåííûå

∙
T𝑖,𝑚. Îáó÷àþùàÿ âûáîðêà öå-

ëåâîé ìîäåëè ôîðìèðóåòñÿ èç ïîëíûõ ïîäïîñëåäîâàòåëüíîñòåé T𝑖,𝑚. Â êàæäóþ ïîäïîñëå-
äîâàòåëüíîñòü ñëó÷àéíûì îáðàçîì äîáàâëÿþòñÿ ïðîïóñêè äî òåõ ïîð, ïîêà äîëÿ ïðîïó-
ùåííûõ òî÷åê íå ïðåâûñèò 25 % îò îáùåãî ÷èñëà ýëåìåíòîâ. Ïîäïîñëåäîâàòåëüíîñòè ñ
ïðîïóñêàìè ïîäàþòñÿ íà âõîä öåëåâîé ìîäåëè, êîòîðàÿ âûïîëíÿåò âîññòàíîâëåíèå. Êà÷å-
ñòâî âîññòàíîâëåíèÿ îöåíèâàåòñÿ ïóòåì ñðàâíåíèÿ âûõîäíûõ âîññòàíîâëåííûõ ïîñëåäîâà-
òåëüíîñòåé ñ èñõîäíûìè ïîëíûìè äî âíåñåíèÿ ïðîïóñêîâ.

Â ðåçóëüòàòå îáó÷åíèÿ îæèäàåòñÿ, ÷òî çíà÷åíèÿ âîññòàíîâëåííûõ ïîäïîñëåäîâàòåëü-

íîñòåé
∙
T𝑖,𝑚 áóäóò ïðèáëèæåíû ê çíà÷åíèÿì ñîîòâåòñòâóþùèõ ïîëíûõ ïîäïîñëåäîâàòåëü-

íîñòåé T𝑖,𝑚. Äëÿ îáåñïå÷åíèÿ îáúåêòèâíîñòè îöåíêè êà÷åñòâà ìîäåëè ïðèìåíÿåòñÿ ïðî-
öåäóðà êðîññ-âàëèäàöèè ñ íåñêîëüêèìè íåçàâèñèìûìè ðàçáèåíèÿìè èñõîäíûõ äàííûõ íà
îáó÷àþùóþ è òåñòîâóþ âûáîðêè. Îöåíêà òî÷íîñòè âîññòàíîâëåíèÿ îñóùåñòâëÿåòñÿ ïî òåì
çíà÷åíèÿì, êîòîðûå áûëè èñêóññòâåííî ïîìå÷åíû êàê ïðîïóùåííûå. Äëÿ îöåíêè òî÷íîñòè
âîññòàíîâëåíèÿ èñïîëüçóåòñÿ ñðåäíåêâàäðàòè÷íàÿ îøèáêà (Mean Squared Error, MSE).
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Таблица 2
Параметры слоев из пространства поиска

№ Тип слоя Глубина
Параметры слоя
Первый Второй

1. Dense [1,20] {16, 32, 64, 128, 256, 512, 1028} —
2. Conv1D [1,5] {32, 64, 128, 256, 512} {3, 5, 7}
3. RNN [1,2] {16, 32, 64, 128} —
4. LSTM [1,2] {16, 32, 64, 128} —
5. GRU [1,2] {16, 32, 64, 128} —

4.1.1. Параметры целевой модели. Â äàííîì èññëåäîâàíèè ïðîñòðàíñòâî ïîèñêà öåëå-
âîé ìîäåëè áûëî îãðàíè÷åíî ñ ó÷åòîì õàðàêòåðíûõ îñîáåííîñòåé çàäà÷ âîññòàíîâëåíèÿ
âðåìåííûõ ðÿäîâ. Â ÷àñòíîñòè, â êà÷åñòâå áàçîâûõ êîìïîíåíòîâ ðàññìàòðèâàëèñü òèïû
ñëîåâ, îáëàäàþùèå ñïîñîáíîñòüþ ìîäåëèðîâàòü âðåìåííûå çàâèñèìîñòè è øèðîêî ïðèìå-
íÿåìûå â ðàíåå îïóáëèêîâàííûõ ðàáîòàõ ïî àíàëèçó è âîññòàíîâëåíèþ âðåìåííûõ ðÿäîâ.
Èñïîëüçîâàëèñü ñëåäóþùèå òèïû ñëîåâ: ïîëíîñâÿçíûå (Dense), îäíîìåðíûå ñâåðòî÷íûå
(Conv1D) è ðåêóððåíòíûå (RNN, LSTM, GRU). Äëÿ êàæäîãî ñëîÿ âàðüèðîâàëèñü èíäè-
âèäóàëüíûå ïàðàìåòðû (ñì. òàáë. 2).

Äëÿ âñåõ ðàññìàòðèâàåìûõ íåéðîñåòåâûõ ìîäåëåé ïðîâîäèëñÿ ïåðåáîð îáùèõ ãèïåð-
ïàðàìåòðîâ: äëèíà âõîäíîé ïîäïîñëåäîâàòåëüíîñòè ïðèíèìàëà çíà÷åíèÿ èç ìíîæåñòâà
{100, 200, 300}, ñêîðîñòü îáó÷åíèÿ èç ìíîæåñòâà {0.001, 0.005, 0.0001, 0.01}. Äëÿ êàæäîé
êîìáèíàöèè òèïîâ ñëîåâ áûëà çàäàíà ìàêñèìàëüíî äîïóñòèìàÿ ãëóáèíà, ó÷èòûâàþùàÿ
ïîòåíöèàëüíûé ðèñê èñ÷åçíîâåíèÿ ãðàäèåíòîâ ïðè îáó÷åíèè ãëóáîêèõ íåéðîñåòåé. Â ñî-
âîêóïíîñòè áûëî ñôîðìèðîâàíî äèñêðåòíîå ïðîñòðàíñòâî èç 200 óíèêàëüíûõ ìîäåëåé, â
ðàìêàõ êîòîðîãî áûëî âûïîëíåíî áîëåå 12 000 çàïóñêîâ îáó÷åíèÿ.

4.2. Наборы данных, конкуренты и методика сравнения. Â êà÷åñòâå íàáîðîâ äàííûõ
äëÿ ýêñïåðèìåíòîâ èñïîëüçóþòñÿ ðåçóëüòàòû îáó÷åíèÿ ìîäåëåé, ïîëó÷åííûå â õîäå ïîèñ-
êà íåéðîñåòåâûå ìîäåëè äëÿ âðåìåííûõ ðÿäîâ èç ðàçëè÷íûõ ïðåäìåòíûõ îáëàñòåé. Îïè-
ñàíèå èñïîëüçóåìûõ âðåìåííûõ ðÿäîâ ïðåäñòàâëåíî â òàáë. 3. Â ïðîöåññå îáó÷åíèÿ êàê
ïðåäëàãàåìîãî ìåòîäà, òàê è ìåòîäîâ-êîíêóðåíòîâ, èñõîäíûé íàáîð äàííûõ ïîäâåðãàëñÿ
ðàçáèåíèþ. Èç âñåãî ìíîæåñòâà âîçìîæíûõ ìîäåëåé èñêëþ÷àëèñü 25 %, îñòàâøèåñÿ 75 %
èñïîëüçîâàëèñü äëÿ îáó÷åíèÿ. Èñêëþ÷åííûå ìîäåëè èñïîëüçîâàëèñü äëÿ òåñòèðîâàíèÿ.
Äëÿ îáåñïå÷åíèÿ ñîïîñòàâèìîñòè ðåçóëüòàòîâ ðàçáèåíèå äàííûõ äëÿ êàæäîãî òåñòèðóåìî-
ãî ìåòîäà îñòàâàëîñü îäèíàêîâûì.

Âî âðåìÿ âû÷èñëèòåëüíûõ ýêñïåðèìåíòîâ ñðàâíèâàëàñü òî÷íîñòü ïðîãíîçà ïàðàìåò-
ðîâ êà÷åñòâà êàæäîãî èññëåäóåìîãî ìåòîäà íà òåñòîâîé âûáîðêå ñ ïîìîùüþ ñèììåòðè÷-
íîé ñðåäíåé àáñîëþòíîé ïðîöåíòíîé îøèáêå (Symmetric Mean Absolute Percentage Error,
SMAPE), êîòîðàÿ îòðàæàåò îøèáêó â ïðîöåíòàõ, ÷òî îáëåã÷àåò èíòåðïðåòàöèþ ðåçóëüòà-
òîâ. Ôîðìàëüíî äàííàÿ îøèáêà ìîæåò áûòü ïðåäñòàâëåíà ñëåäóþùèì îáðàçîì:

SMAPE =
100 %

𝑛

𝑛∑︁
𝑖=1

|𝑦𝑖 − 𝑦𝑖|
(|𝑦𝑖|+ |𝑦𝑖|) /2

,

ãäå 𝑦𝑖 � èñòèííîå çíà÷åíèå, 𝑦𝑖 � ïðåäñêàçàííîå ìîäåëüþ çíà÷åíèå, 𝑛 � îáùåå ÷èñëî íà-
áëþäåíèé.



90 Прикладные информационные технологии

Таблица 3
Наборы данных, используемые в экспериментах

№ Набор
Длина,
𝑛× 103

Количество,
измерений, 𝑑

Предметная область

1. BAFU [31] 50 10 Сброс воды в реках Швейцарии

2. Electricity [32] 5 9
Потребление электроэнергии в нескольких
домашних хозяйствах Франции

3. Climate [33] 5 10 Погода в различных локациях Северной Америки
4. Madrid [34] 25 10 Трафик автомобильных дорог в Мадриде
5. NREL [35] 8.7 9 Потребление электроэнергии в научном центре в

США

Â êà÷åñòâå êîíêóðåíòîâ èñïîëüçîâàëèñü ñëåäóþùèå ìåòîäû: XGBoost, NGBoost,
LightGBM, Random Forest [14], BOHAMIANN [20], DNGO [19], MLP [17], OMNI [18],
VSGP [15]. Â êà÷åñòâå ðåàëèçàöèè ñðàâíèâàåìûõ ìåòîäîâ èñïîëüçîâàëàñü ðåàëèçàöèÿ,
ïðåäîñòàâëÿåìàÿ â ñîñòàâå ôðåéìâîðêà NASLib [18]. Ãèïåðïàðàìåòðû êîíêóðåíòîâ ïîä-
áèðàëèñü èíäèâèäóàëüíî äëÿ êàæäîãî âðåìåííîãî ðÿäà ñ èñïîëüçîâàíèåì ïëàòôîðìû
Weights & Biases (wandb) [8] â òå÷åíèè îäíîé íåäåëè.

4.3. Результаты. Íà ðèñ. 5 ïðåäñòàâëåíû ðåçóëüòàòû âû÷èñëèòåëüíûõ ýêñïåðèìåí-
òîâ â âèäå ñòîëá÷àòûõ äèàãðàìì, îòðàæàþùèõ òî÷íîñòü ïðîãíîçà äëÿ âñåõ èññëåäóåìûõ
ìåòîäîâ. Äèàãðàììû îðãàíèçîâàíû â âèäå òàáëèöû: ñòîëáöû ñîîòâåòñòâóþò íàáîðàì âðå-
ìåííûõ ðÿäîâ, ñòðîêè îøèáêàì ïðîãíîçèðóåìûõ ïàðàìåòðîâ êà÷åñòâà. Ïîä ïàðàìåòðàìè
êà÷åñòâà ïîäðàçóìåâàåòñÿ îøèáêà ïðîãíîçà òî÷íîñòè öåëåâîé ìîäåëè è îøèáêà ïðîãíî-
çà âðåìåíè åå îáó÷åíèÿ. Êàæäàÿ äèàãðàììà îòîáðàæàåò çíà÷åíèÿ ìåòðèêè SMAPE äëÿ
âñåõ ñðàâíèâàåìûõ ìåòîäîâ. Äëÿ íàãëÿäíîñòè íàèëó÷øåå çíà÷åíèå â êàæäîé äèàãðàììå
âûäåëåíî æèðíûì øðèôòîì.

Ìåòîä tsGAP2 äåìîíñòðèðóåò ñòàáèëüíîå è çíà÷èòåëüíîå ïðåèìóùåñòâî íàä êîíêó-
ðåíòàìè. Â ñðåäíåì ïî ðàçëè÷íûì íàáîðàì äàííûõ tsGAP2 îáåñïå÷èâàåò íàèáîëüøóþ
òî÷íîñòü ïðîãíîçà êàê ïî îøèáêå ìîäåëè, òàê è ïî âðåìåíè îáó÷åíèÿ ìîäåëè. Âåëè÷èíà
îøèáêè ïðîãíîçà, äîñòèãàåìàÿ ïðåäëîæåííûì ìåòîäîì, â ñðåäíåì ñîñòàâëÿåò 4.4 % ïî
îøèáêå öåëåîâîé ìîäåëè è 8.8 % ïî âðåìåíè åå îáó÷åíèÿ. Â òî æå âðåìÿ ñðåäíèå çíà÷åíèÿ
àíàëîãè÷íûõ îøèáîê ñðåäè âñåõ àëüòåðíàòèâíûõ ïîäõîäîâ ñîñòàâëÿþò 27.6 % è 61.1 %
ñîîòâåòñòâåííî.

5. Дискуссия. Â ðàìêàõ ïðåäëàãàåìîãî ïîäõîäà öåëåâàÿ ìîäåëü îáó÷àåòñÿ íà ìíîãî-
ìåðíûõ âðåìåííûõ ðÿäàõ, êîòîðûå õàðàêòåðèçóþòñÿ ñòîõàñòè÷íîñòüþ. Çíà÷åíèÿ âî âðå-
ìåííûõ òî÷êàõ ìîãóò ôîðìèðîâàòüñÿ ïîä âîçäåéñòâèåì ìíîæåñòâà ôàêòîðîâ è ïîä÷èíÿòü-
ñÿ ðàçëè÷íûì âåðîÿòíîñòíûì çàêîíîìåðíîñòÿì. Èñïîëüçóåìàÿ äëÿ âîññòàíîâëåíèÿ öåëå-
âàÿ ìîäåëü òàêæå èìååò ñòîõàñòè÷åñêèé õàðàêòåð. Ïåðåä íà÷àëîì îáó÷åíèÿ âåñà íåéðîñå-
òåâîé ìîäåëè èíèöèàëèçèðóþòñÿ ñëó÷àéíûì îáðàçîì. Â ïðîöåññå îáó÷åíèÿ âûáîð âõîäíûõ
è âûõîäíûõ ïðèìåðîâ îñóùåñòâëÿåòñÿ ñëó÷àéíî. Â ðåçóëüòàòå ïîâòîðíîå îáó÷åíèå ìîäåëè
ìîæåò ïðèâîäèòü ê äîñòèæåíèþ ðàçíûõ ëîêàëüíûõ ìèíèìóìîâ ôóíêöèè ïîòåðü è, ñîîò-
âåòñòâåííî, ê âàðèàòèâíîñòè êà÷åñòâà ìîäåëè.

Óêàçàííûå àñïåêòû ñâèäåòåëüñòâóþò î òîì, ÷òî âîññòàíîâëåííûå çíà÷åíèÿ è ïðîãíîç
êà÷åñòâà öåëåâîé ìîäåëè íå ñòîèò èíòåðïðåòèðîâàòü êàê äåòåðìèíèðîâàííûå èëè àáñî-
ëþòíî òî÷íûå îöåíêè. Ïîëó÷àåìûå ðåçóëüòàòû öåëåñîîáðàçíî èíòåðïðåòèðîâàòü êàê âå-
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Рис. 5. Результаты сравнения (SMAPE)

ðîÿòíîñòíûå îöåíêè [36], îòðàæàþùèå óñðåäíåííîå ïîâåäåíèå ìîäåëè â ðàìêàõ îáó÷àþ-
ùåé âûáîðêè. Òî÷íîñòü îöåíêè çàâèñèò îò ðåïðåçåíòàòèâíîñòè îáó÷àþùåé âûáîðêè öåëå-
âîé ìîäåëè è îò îáúåìà èññëåäîâàííîãî ïðîñòðàíñòâà ïîèñêà. Ïîä ðåïðåçåíòàòèâíîñòüþ â
äàííîì êîíòåêñòå ñëåäóåò ïîíèìàòü òî, íàñêîëüêî âðåìåííîé ðÿä îòðàæàåò õàðàêòåðíîå
ðàçíîîáðàçèå ñîñòîÿíèÿ ìîäåëèðóåìîé ñèñòåìû.

Âàæíî òàêæå îòìåòèòü, ÷òî öåëü íåéðîñåòåâîé ìîäåëè çàêëþ÷àåòñÿ íå â äîñëîâíîì
âîñïðîèçâåäåíèè îáó÷àþùèõ äàííûõ, à â âûÿâëåíèè è îáîáùåíèè ñêðûòûõ çàêîíîìåð-
íîñòåé â íàáëþäàåìûõ ïðîöåññàõ. Íåñîâïàäåíèå ìåæäó âîññòàíîâëåííûìè è èñõîäíûìè
çíà÷åíèÿìè íåîáÿçàòåëüíî ñâèäåòåëüñòâóåò î íèçêîé òî÷íîñòè ìîäåëè. Íàïðîòèâ, ÷ðåç-
ìåðíîå ñîîòâåòñòâèå îáó÷àþùèì äàííûì ìîæåò óêàçûâàòü íà ïåðåîáó÷åíèå è ñíèæåíèå
ñïîñîáíîñòè ìîäåëè ê îáîáùåíèþ. Ïîýòîìó îöåíêà ýôôåêòèâíîñòè äîëæíà îïèðàòüñÿ íà
åå óñòîé÷èâîñòü ê íîâûì, ðàíåå íå âñòðå÷àâøèìñÿ âõîäíûì äàííûì.

Ñëåäîâàòåëüíî, íåñìîòðÿ íà ñòîõàñòè÷åñêóþ ïðèðîäó êàê äàííûõ, òàê è ìîäåëåé, äî-
ñòèãíóòàÿ òî÷íîñòü ïðîãíîçîâ ìîæåò îñòàâàòüñÿ â ïðåäåëàõ äîïóñòèìîãî äèàïàçîíà, ñî-
îòâåòñòâóþùåãî òðåáîâàíèÿì ïðåäìåòíîé îáëàñòè. Ãðàíèöû äîïóñòèìûõ îòêëîíåíèé â
ýòîì ñëó÷àå äîëæíû îïðåäåëÿòüñÿ ëèáî ýêñïåðòíî, ëèáî èñõîäÿ èç ïðèêëàäíûõ êðèòåðèåâ
êà÷åñòâà ìîäåëèðîâàíèÿ è àíàëèçà. Â êîíòåêñòå NAS öåëüþ ÿâëÿåòñÿ íå àáñîëþòíîå ïðåä-
ñêàçàíèå êà÷åñòâà öåëåâîé ìîäåëè, à îáåñïå÷åíèå íàäåæíîãî îòíîñèòåëüíîãî ðàíæèðîâà-
íèÿ âîçìîæíûõ ýëåìåíòîâ ïðîñòðàíñòâà ïîèñêà. Ïðè òàêîì ïîäõîäå äàæå ïðèáëèæåííûå
çíà÷åíèÿ òî÷íîñòè îêàçûâàþòñÿ ïîëåçíûìè, åñëè ñîõðàíÿåòñÿ ñîãëàñîâàííîñòü â îöåíêå
îòíîñèòåëüíîãî êà÷åñòâà àëüòåðíàòèâ. Ïðåäëîæåííûé â äàííîé ðàáîòå ïîäõîä äåìîíñòðè-
ðóåò ñîïîñòàâèìûå èëè ëó÷øèå ðåçóëüòàòû ïî ñðàâíåíèþ ñ ñîâðåìåííûìè àíàëîãàìè è,
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ñëåäóÿ èç èçëîæåííîãî âûøå, ìîæåò èñïîëüçîâàòüñÿ äëÿ ðåøåíèÿ çàäà÷è ïðîãíîçèðîâàíèÿ
êà÷åñòâà íåéðîñåòåâûõ ìîäåëåé.

Заключение. Â äàííîé ñòàòüå ðàññìîòðåíà çàäà÷à ïðîãíîçà êà÷åñòâà íåéðîñåòåâûõ
ìîäåëåé âîññòàíîâëåíèÿ ïðîïóùåííûõ çíà÷åíèé â ìíîãîìåðíûõ âðåìåííûõ ðÿäàõ, ÷òî ÿâ-
ëÿåòñÿ âàæíîé ïðîáëåìîé âî ìíîãèõ ïðåäìåòíûõ îáëàñòÿõ. Ïîä êà÷åñòâîì íåéðîñåòåâîé
ìîäåëè ïîäðàçóìåâàåòñÿ ñîâîêóïíîñòü äâóõ ïîêàçàòåëåé: îøèáêà ìîäåëè è âðåìÿ åå îáó-
÷åíèÿ íà îäíîé ýïîõå. Ïðåäëîæåí ìåòîä tsGAP2 äëÿ ïðîãíîçèðîâàíèÿ îøèáêè è âðåìåíè
îáó÷åíèÿ íåéðîñåòåâûõ ìîäåëåé. Â äàííîé ðàáîòå íåéðîñåòåâàÿ ìîäåëü ðàññìàòðèâàåòñÿ
êàê îðèåíòèðîâàííûé àöèêëè÷åñêèé ãðàô, â êîòîðîì óçëû ïðåäñòàâëÿþò ñîáîé ñëîè, à
ñâÿçè ïðåäñòàâëÿþò ñîáîé ïåðåäà÷ó äàííûõ ìåæäó íèìè. Ìåòîä ïðåäïîëàãàåò íàëè÷èå
òðåõ êîìïîíåíòîâ: Àâòîýíêîäåð ãðàôîâîãî ïðåäñòàâëåíèÿ, Ýíêîäåð ïàðàìåòðîâ è Àãðåãà-
òîð. Àâòîýíêîäåð ïðåîáðàçóåò ãðàôîâîå ïðåäñòàâëåíèå ìîäåëè â âåêòîðíîå, ñîäåðæàùåå
íàèáîëåå âàæíóþ èíôîðìàöèþ. Ýíêîäåð êîäèðóåò ãèïåðïàðàìåòðû è õàðàêòåðèñòèêè âû-
÷èñëèòåëüíîãî óñòðîéñòâà, ôîðìèðóÿ âåêòîð, ñîäåðæàùèé èíôîðìàöèþ î âíåøíèõ ôàê-
òîðàõ, âëèÿþùèõ íà ïðîöåññ îáó÷åíèÿ. Àãðåãàòîð îáúåäèíÿåò ïîëó÷åííûå âåêòîðû è íà
èõ îñíîâå ïðîãíîçèðóåò ïîêàçàòåëè êà÷åñòâà íåéðîñåòåâîé ìîäåëè: îøèáêó íà âàëèäàöèîí-
íîé âûáîðêå è âðåìÿ îáó÷åíèÿ çà îäíó ýïîõó. Äëÿ îáó÷åíèÿ ìîäåëåé ìåòîäà èñïîëüçóåòñÿ
ñîñòàâíàÿ îøèáêà, êîòîðàÿ ïðåäñòàâëÿåò ñîáîé âçâåøåííóþ ñóììó íåñêîëüêèõ êîìïîíåíò.
Êàæäàÿ êîìïîíåíòà îöåíèâàåò îòêëîíåíèå ïî îïðåäåëåííîìó àñïåêòó ïðîãíîçà: íàëè÷èþ
ñâÿçåé ìåæäó ñëîÿìè, êëàññèôèêàöèè ñëîåâ è ôóíêöèé àêòèâàöèè, ðåãðåññèè ïàðàìåòðîâ
ñëîåâ, òî÷íîñòè è âðåìåíè ðàáîòû ìîäåëè.

Äëÿ äàííîãî èññëåäîâàíèÿ áûëî ñôîðìèðîâàíî è ïðîàíàëèçèðîâàíî ïðîñòðàíñòâî
ïîèñêà, âêëþ÷àþùåå 200 ðàçëè÷íûõ íåéðîñåòåâûõ ìîäåëåé. Â êà÷åñòâå öåëåâîé ìîäåëè
áûëà âûáðàíà íåéðîñåòåâàÿ ìîäåëü, âûïîëíÿþùàÿ âîññòàíîâëåíèå âðåìåííîãî ðÿäà.
Îáó÷åíèå ìîäåëåé èç ïðîñòðàíñòâà ïîèñêà ïðîèçâîäèëîñü íà âðåìåííûõ ðÿäàõ èç ðàçëè÷-
íûõ ïðåäìåòíûõ îáëàñòåé. Â õîäå èññëåäîâàíèÿ ïðîñòðàíñòâà ïîèñêà áûëî ïðîèçâåäåíî
12 000 çàïóñêîâ îáó÷åíèÿ ìîäåëåé. Äëÿ îöåíêè ýôôåêòèâíîñòè ïðåäëîæåííîãî ìåòîäà
è åãî ñðàâíåíèÿ ñ êîíêóðåíòàìè ïðîâîäèëèñü âû÷èñëèòåëüíûå ýêñïåðèìåíòû. Â õîäå
ýêñïåðèìåíòîâ ìîäåëè îáó÷àëèñü ïðîãíîçèðîâàòü êà÷åñòâî öåëåâîé ìîäåëè. Âû÷èñëèòåëü-
íûå ýêñïåðèìåíòû ïîêàçàëè, ÷òî ïðåäëîæåííûé ìåòîä îáåñïå÷èâàåò âûñîêóþ òî÷íîñòü
ïðåäñêàçàíèÿ êà÷åñòâà öåëåâîé ìîäåëè: ñðåäíÿÿ îøèáêà ïî ìåòðèêå SMAPE ñîñòàâëÿåò
4.4 %, ÷òî ñóùåñòâåííî ïðåâîñõîäèò àëüòåðíàòèâíûå ïîäõîäû, äåìîíñòðèðóþùèå ñðåäíåå
çíà÷åíèå 27.6 %. Ñðåäíÿÿ îøèáêà ïðîãíîçà âðåìåíè îáó÷åíèÿ ñîñòàâëÿåò 8.8 %, òîãäà
êàê ñóùåñòâóþùèå ìåòîäû ïîêàçûâàþò çíà÷èòåëüíî áîëåå âûñîêèå çíà÷åíèÿ � äî 61.6 %.
Äàëüíåéøèå èññëåäîâàíèÿ áóäóò ïîñâÿùåíû ðàçðàáîòêå ìåòîäîâ AutoML, íàïðàâëåííûõ
íà àâòîìàòèçàöèþ ïîñòðîåíèÿ íåéðîñòåâûõ ìîäåëåé âîññòàíîâëåíèÿ âðåìåííûõ ðÿäîâ è
èñïîëüçóþùèé ìåòîä tsGAP2 äëÿ ïðåäñêàçàíèÿ êà÷åñòâà ïðîåêòèðóåìîé ìîäåëè.
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1.6. references+транслитерация неанглоязычных элементов списка литературы;
1.7. название статьи на русском языке;
1.8. инициалы и фамилии и авторов;
1.9. место работы авторов: полное наименование организации, почтовый индекс, город, страна;
1.10. индекс УДК;
1.11. аннотация на русском языке;



1.12. ключевые слова (не более 8);
1.13. текст статьи;
1.14. список литературы, оформленный в соответствии с требованиями ГОСТ;
1.15. краткие биографии авторов на английском и русском языках с указанием ключевых научных

достижений (ученую степень, ученое звание — при наличии; место работы, занимаемую должность, кон-
тактные данные — почтовый адрес с индексом, адрес электронной почты, контактный телефон, основные
области научных интересов и формулировка основных результатов).

2. Требования к формулам:
— Нумерация формул сквозная, выносные формулы центрируются, номер выровнен по правому краю.
3. Требования к рисункам:
— Файлы с рисунками присылаются отдельно в формате программ, в которых они были выполне-

ны: в формате MS Excel (для графиков и диаграмм), eps, pdf, png, tiff, bmp или jpeg (с максимальным
качеством).

— Рисунки с подрисуночными подписями заверстываются в текст статьи.
— Тексты, являющиеся частью рисунка, выполняются шрифтом TimesNewRoman.
— Фотографии должны иметь разрешение не менее 300 dpi.
4. Дополнительные требования:
— В текст статьи необходимо включать ссылки на рисунки и таблицы, а также подрисуночные под-

писи и заголовки таблиц. Все буквенные обозначения, приведенные на рисунках, необходимо пояснить в
основном тексте или в подрисуночных подписях.

— Сокращения слов не допускаются (кроме общепринятых).
— Векторные переменные обозначаются полужирным шрифтом без курсива.
— Таблицы не должны быть громоздкими. Значения физических величин в таблицах, на графиках и

в тексте должны указываться в единицах измерения СИ.
— Графики, если их на рисунке несколько, а также отдельные детали на чертежах, узлы и линии на

схемах следует обозначать цифрами, набранными курсивом.
— Нумеровать следует только те формулы и уравнения, на которые имеются ссылки в тексте, нуме-

рация сквозная.
— Ссылки на источники в тексте заключаются в квадратные скобки.
— Иностранные источники приводятся на языке оригинала. Ссылки на неопубликованные работы не

допускаются.
Все статьи, опубликованные в журнале «Проблемы информатики», доступны на сайте https://

elibrary.ru/title_about.asp?id=30275 и на сайте журнала http://problem-info.sscc.ru спустя год
после опубликования.

Пример оформления статей можно посмотреть на сайте журнала http://problem-info.sscc.ru.




	PBI_Cover_n68-1
	N68



