1. DIESTEL R. Graph theory. Graduate texts in mathematics. Springer, 2005. ISBN 978-3-642-14278-9.
2. ALBERT R., BARABASI A-L. Statistical mechanics of complex networks // Rev. of Modern Phys. 2002. V. 74. P. 47-97. DOI: 10.1103/RevModPhys.74.47.
3. NEWMAN М. Е. J. Networks: An introduction. Oxford, NY: Oxford Univ. Press., 2010. ISBN-13: 9780199206650.
4. ROSVALL M., ESQUIVEL A. V., LANCICHINETTI A., WEST J. D., LAMBIOTTE R. Memory in network flows and its effects on spreading dynamics and community detection // Nature commun. 2014. V. 5, 4630. DOI: 10.1038/ncomms5630.
5. ON B.-W., ELMACIOGLU E., LEE D., KANG J., PEI J. Improving grouped-entity resolution using quasi-cliques // Proc, of the 6th Intern, conf, on data mining (ICDM’06). 2006. P. 1008-1015. DOI: 10.1109/ICDM.2006.85.
6. BENSON A. R., ABEBE R., SCHAUB M. T., JADBABAIE A., KLEINBERG J. Simplicial closure and higher-order link prediction // Proc. Nat. Acad. Sci. 2018.V. 115, No. 48: E11221-E11230. DOI: 10.1073/pnas. 1800683115.
7. JOHNSON J. Hypernetworks in the science of complex systems. UK: Imperial College Press. 2013. ISSN: 1755-7453.
8. BATTISTON F., CENCETTI G., IACOPINI I., LATORA V., LUCAS M., PATANIA A. YOUNG J-G., PETRI G. Networks beyond pairwise interactions: Structure and dynamics // Phys. Rep. 2020. V. 874. P. 1-92. DOI: 10.1016/j.physrep.2020.05.004.
9. LAMBIOTTE R., ROSVALL M., SCHOLTES I. From networks to optimal higher-order models of complex systems // Nature Phys. 2019. V. 15. P. 313-320. DOI: 10.1038/s41567-019-0459-y.
10. BOCCALETTI S., BlANCONI G., CRIADO R., DEL GENIO C. L, GyMEZ-GARDECES J., ROMANCE M., SENDINA-NADAL L, WANG Z., ZANIN M. The structure and dynamics of multilayer networks // Phys. Rep. 2014. V. 544(1). P. 1-122. DOI: 10.1016/j.physrep.2014.07.001.
11. BIANCONI G. Multilayer networks: Structure and function. Oxford Univ. Press. 2018. ISBN-13: 9780198753919.
12. HOLME P.Modern temporal network theory: A colloquium // Eur. Phys. J. В 88, 234. 2015. DOI: 10.1140/epjb/e2015-60657-4.
13. BORGATTI S. P., EVERETT M. G. Network analysis of 2-mode data // Soc. networks. 1997. V. 19. P. 243-269. DOI: 10.1016/S0378-8733(96)00301-2. '
14. NEWMAN M. E. J., STROGATZ, S. H., WATTS D. J. Random graphs with arbitrary degree distributions and their applications // Phys. Rev. E 64, 026118. 2001. DOI: 10.1103/PhysRevE. 64.026118.
15. BREIGER R. L. The duality of persons and groups // Soc. Forces. 1974. V. 53, No. 2. P. 1981-1990. DOI: 10.2307/2576011.
16. ATKIN R. H. From cohomology in physics to q-connectivity in social science // Intern. J. Man-Machine Stud. 1972. V. 4, iss. 2. R 139-167. DOI: 10.1016/S0020-7373(72)80029-4.
17. ATKIN R. H. An algebra for patterns on a complex, I // Intern. J. Man-Machine Stud. 1974.
V. 6, iss. 3. P. 285-307. DOI: 10.1016/S0020-7373(74)80024-6.
18. ATKIN R. H. An algebra for patterns on a complex, II // Intern. J. Man-Machine Stud. 1976.
V. 8, iss. 5. P. 483-498. DOI: 10.1016/80020-7373(76)80015-6.
19. HATCHER A. Algebraic topology. Cambridge, UK: Cambridge Univ. Press, 2002.
20. SEIDMAN S. Structures induced by collections of subsets: A hypergraph approach // Math. Soc. Sci. 1981. V. 1, iss. 4. P. 381-396. DOI: 10.1016/0165-4896(81)90016-0.
21. BERGE C. Graphs and hypergraphs. Amsterdam: North-Holland. 1976.
22. POPKOV V.K. Giperseti i strukturnye modeli slozhnykh sistem // Matematicheskie i immitatsvonnve modeli slozhnvkh sistem: SM 6, sb. navch. trudov. Novosibirsk, 1981. P. 26-48.
23. WILSON T. P. Relational networks: An extension of sociometric concepts // Soc. Networks. 1982. V. 4, iss. 2. P. 105-116. DOI: 10.1016/0378-8733(82)90028-4.
24. ANDJELKOVIC M., TADIC B., MALETIC S., RAJKOVIC M. Hierarchical sequencing of online social graphs // Phys. A: Statistical Mechanics and its Applications. 2015. V. 436, iss. 15. P. 582-595. DOI: 10.1016/j.physa.2015.05.075.
25. ZHOU D., HUANG J., SCHOLKOPF В. Learning with hypergraphs: Clustering, classification, and embedding // Proc, of the 19th Intern, conf, on neural information processing systems. 2007. P. 1601-1608. DOI: 10.7551/mitpress/7503.003.0205.
26. BOTHOREL C., BOUKLIT M. An algorithm for detecting communities in folksonomy hypergraphs. I2CS 2011: the 11th Intern, conf, on innovative Internet community services, Berlin (Germany), June 2011. P. 159-168. hal-00724991.
27. ESTRADA E., RODRIGUEZ-VELAZQUEZ J. A. Complex networks as hypergraphs // arxiv: physics/0505137, 2005. DOI: 10.1016/j.physa.2005.12.002.
28. MORRIS S. A., YEN G. G. Construction of bipartite and unipartite weighted networks from collections of journal papers // arxiv: physics/0503061, 2005.
29. GUILLAUME J.-L., LATAPY M. Bipartite graphs as models of complex networks // Phys. A: Stat. Meehan, and its Appl. 2006. V. 371, iss. 2. P. 795-813. DOI: 10.1016/j.physa.2006.04.047.
30. GHOSHAL G., ZLATIC V., CALDARELLI G., NEWMAN M. E. J. Random hypergraphs and their applications // Phys. Rev. E 79(6), 066118. 2009. DOI: 10.1103/PhysRevE.79.066118.
31. TORRES J. J., BIANCONI G. Simplicial complexes: higher-order spectral dimension and dynamics // J. Phys.: Complexity. V. 1, iss. 1. 2020. 015002. DOI: 10.1088/2632-072X/ab82f5.
32. CARLETTI T., FANELLI D., NICOLETTI S. Dynamical systems on hypergraphs // J. of Phys.: Complexity. 2020. V. 1, iss. 3, 035006. DOI: 10.1088/2632-072X/aba8el.
33. BREDIKHIN S. V., LYAPUNOV V. M, SCHERBAKOVA N. G. Struktura i parametry nevzveshennoi seti soavtorstva na osnove dannykh BD RePEc // Problem, inform. 2021. No 3. P. 56-67. DOI: 10.24411/2073-0667-2021-3-56-57.
34. BREDIKHIN S. V., LYAPUNOV V. M, SCHERBAKOVA N. G. Ranzhyrovanie uzlov vzveshennoy seti soavtorstva: analiz dannykh BD RePEc // Problem. Inform. 2021. No 4. P. 5-15. DOI: 10.24412/2073-0667-2021-4-67-83.
35. BERGE C. Hypergraphs. North-Holland. 1989.
36. VOLOSHIN V. I. Introduction to graph and hypergraph theory. Nova Science PubL, 2009. ISBN: 978-1-60692372-6.
37. BRETTO A. Hypergraph theory: An introduction (Mathematical Engineering). Heidelberg: Springer Intern. Publishing, 2013. ISBN: 978-3-319-00079-4. DOI: 10.1007/978-3-319-00080-0.
38. ZYKOV A. A. Gipergrafy // Uspekhi mat. nauk. 1974. Vol. 29, iss. 6. P. 89-156.
39. STELL J. G. Relations on hypergraphs // RAMiCS’12: Proc, of the 13th Intern, conf, on relational and algebraic methods in computer science. 2012. P. 326-341. DOI: 10.1007/978-3-642- 33314-9_22.
40. OUVRARD X. Hypergraphs: An introduction and review // arxiv: 2002.05014v2, 2020.
41. BENSON A. R., GLEICH D. F., LESKOVEC J. Higher-order organization of complex networks // Science. 2016. V. 353 (6295). P. 163-166. DOI: 10.1126/science.aad9029.
42. MAKINEN E. HOW to draw a hypergraph // Intern. J. of Comput. Math. 1990. V. 34, iss. 3-4. DOI: 10.1080/00207169008803875.
43. JOHNSON D. S., POLLAK H. O. Hypergraph planarity and the complexity of drawing Venn diagrams // J. Graph Theory. 1987. V. 10. P. 309-325. DOI: 10.1002/jgt.31901103067.
44. KAUFMANN M., VAN KREVELD M., SPECKMANN B. Subdivision drawings of hypergraphs // Graph Drawing. V. 5417. P. 396-407. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. ISBN: 978-3-642-00218-2 978-3-642-00219-9. DOI: 10.1007/978-3-642-00219-9_39.
45. TORRES L., BLEVINS A. S., BASSETT D. S., ELIASSI-RAD T. The why, how, and when of representations for complex systems // SIAM Rev. 2021. V. 63, iss. 3. P. 435-485.
46. MALETIC S., RAJKOVIC M., VASILJEVIC D. Simplicial complexes of networks and their statistical properties // Proc. Intern, conf, on computational science, Springer. 2008. P. 568-575.
47. ESTRADA E., ROSS G. J. Centrality in simplicial complexes. Application to protein interaction networks // J. Theor. Biol. 2018. V. 438. P. 46-60. DOI: 10.1016/j.jtbi.2017.11.003.
48. SERRANO D. Н., GOMEZ D. Centrality measures in simplicial complexes: applications of topological data analysis to network science // Appl. Math. Comput. 2020. V. 383, iss. 3, 125331. DOI: 10.1016/j.amc.2020.125331.
49. PATANIA A., PETRI G., VACCARINO F. The shape of collaboration // EPJ Data Sci. 2017. V. 6, iss. 18. DOI: 10.1140/epjds/sl3688-017-0114-8.
50. SERRANO D. H., HERNANDEZ-SERRANO J., GOMEZ D. Simplicial degree in complex networks. Applications of topological data analysis to network science // Chaos, Solitons & Fractals. 2020. V. 137, 109839. DOI: 10.1016/j.chaos.2020.109839.
51. ZHOU W., NAKHLEH U. Properties of metabolic graphs: biological organization or representation artifacts? // BMC Bioinformatics. 2011. V. 12. P. 132-144.
52. GALLAGHER S. R., GOLDBERG D. S. Clustering coefficients in protein interaction hypernetworks // BCBT3: Proc, of the Intern. Conf, on Bioinformatics, Comput. Biology and Biomedical Informatics, Washington (USA), Sept. 22-25, 2013. P. 552-560. DOI: 10.1145/2506583.2506635.
53. FREEMAN L. C. Centrality in social networks. Conceptual clarification // Soc. Networks. 1978/1979. V. 1. P. 215-239. DOI: 10.1016/0378-8733(78)90021-7.
54. FRIEDKIN N. E. Theoretical foundations for centrality measures // Amer. J. Soc. 1991. V. 96. P. 1478-1504. DOI: 10.1086/229694.
55. WASSERMAN S., FAUST K. Social network analysis. Cambridge Univ. Press, 1984. ISBN: 9780511815478. DOI: 10.1017/CBO9780511815478.
56. BOLDI P., VlGNA S. Axioms for centrality // Intern. Math. 2013. V. 10(3-4). P. 222-262. DOI: 10.1080/15427951.2013.865686.
57. FAUST K. Centrality in affiliation networks // Social Networks. 1997. V. 19. P. 157-191. DOI: 10.1016/80378-8733(96)00300-0.
58. KAPOOR K., SHARMA D., SRIVASTAVA J. Weighted node degree centrality for hypergraphs // Proc, of the IEEE 2nd Intern. Network Science Workshop (NSW). 2013. P. 152-155. United States, West Point, NY, April 20 - May 1, 2013. DOI: 10.1109/NSW.2013.6609212.
59. BONACICH P. Simultaneous group and individual centralities // Soc. networks 1991. V. 13, iss. 2. P. 155-168. DOI: 10.1016/0378-8733(91)90018-0.
60. BUSSENIERS E. General centrality in a hypergraph // arXiv: 1403.5162, 2014.
61. BONACICH P. Factoring and weighting approaches to status scores and clique identification // J. of Math. Soc. 1972. V. 2, No. 1. P. 113-120. DOI: 10.1080/0022250X.1972.9989806.
62. BONACICH P. Power and centrality: A family of measures // Amer. J. Soc. 1987. V. 92, No. 5. P. 1170-1182.
63. CHEN X. The shortest path algorithms of hypergraphs based on search strategies // J. of Software. 2015. V. 10, No. 1. P. 94-105. DOI: 10.17706/jsw.l0.1.94-105.
64. BRANDES U. A faster algorithm for betweenness centrality // Math. Sociol. 2001. V. 25. P. 163-177. DOI: 10.1080/0022250X.2001.9990249.
65. BRANDES U. On variants of shortest-path betweenness centrality and their generic computation // Soc. Networks. 2008. V. 30. P. 136-145. DOI: 10.1016/j.socnet.2007.11.001.
66. Puzis R., PUROHIT M., SUBRAHMANIAN V. S. Betweenness computation in the single graph representation of hypergraphs // Soc. networks. 2013. V. 35, iss. 4. P. 561-572. DOI: 10.1016/j.socnet.2013.07.006.
67. COOPER J., DUTLE A. Spectra of uniform hypergraphs // Linear Algebra Appl. 2012. V. 436, iss. 9. P. 3268-3292. DOI: 10.1016/j.laa.2011.11.018.
68. Hu S., Qi L. The Laplacian of a uniform hypergraph // J. Comb. Optim. 2015. V. 29, iss. 2. P. 331-366. DOI 10.1007/sl0878-013-9596-x.
69. BANERJEE A., CHAR A., MONDAL B. Spectra of general hypergraphs // Linear Algebra Appl. 2016. V. 518, iss. 1. P. 14-30. D01:10.1016/j.laa.2016.12.022.
70. RODRIGUEZ J. A. On the Laplacian spectrum and walk-regular hypergraphs // Lin. and Multilin. Alg. 2003. V. 51, No. 3. P. 285-297.
71. SHI J., MALIK J. Normalized cuts and image segmentation // IEEE Trans, on Pattern Analysis and Machine Intell. 2000. V. 22(8). P. 888-905.
72. MEILA M., SHI J. A random walks view of spectral segmentation //In Proc. 8th Inti. Workshop on Artif. Intell, and Statistics. PMLR R3:203-208, 2001.
73. Lu L., PENG X. High-ordered random walks and generalized Laplacians on hypergraphs // Intern. Workshop on Algorithms and Models for the Web-Graph. Springer, 2011. P. 14-25.
74. MUHAMMAD A., EGERSTEDT M. Control using higher order Laplacians in network topologies // Proc, of 17th Intern. Symp. on Math. Theory of Networks and Systems, Citeseer, 2006. P. 1024-1038.
75. MOORE T. J., DROST R. J., SWAMI A. The communications and networks collaborative technology alliance publication network: a case study on graph and simplicial complex analysis // Comput. and inform, sci. Directorate, ARL, US army research Laboratory. 2015.
Institute of Computational Mathematics and Mathematical Geophysics SB RAS, 630090, Novosibirsk, Russia
Automatic construction of efficient scientific parallel programs for supercomputers is in general a complex problem of system parallel programming. Therefore, various specialized system algorithms for automated parallel programs construction are of use. Of interest are algorithms for automated parallel program construction from a given numerical algorithm description. These algorithms can either be general purpose or specialized. The specialized parallel program construction algorithms are of particular interest. Despite the fact that such specialized system algorithms are applicable only for restricted classes of input numerical algorithms, such specialized algorithms have a significant advantage. These algorithms allow parallel program generators to employ parallel programming techniques which are widely used in manual parallel programming to construct highly efficient parallel programs. LuNA system for automatic construction of distributed parallel programs provides a basis for accumulation of such specialized system algorithms to provide high-quality parallel programs construction in particular subject domains. This system allows automated construction of parallel programs for a distributed memory parallel computer from a given numerical algorithm description written with high-level LuNA language. In this paper, a novel specialized algorithm of parallel programs construction for sparse linear algebra domain is presented. It is applicable for a class of sparse linear algebra algorithms which includes widely used preconditioner algorithms for sparse systems of linear equations. This fact makes the developed specialized system algorithm of practical interest. The presented specialized automated parallel program construction algorithm has been implemented as a specialized run-time system which has been integrated into the LuNA system and the module which has been integrated into the LuNA compiler. In order to integrate the implementation of the developed specialized system algorithm into the LuNA system the following approach is used. The LuNA compiler detects if the input numerical algorithm description written with LuNA language belongs to a class of numerical algorithms for which the LuNA system has a specialized support. In this case the corresponding specialized system algorithms are used to construct the so-called intermediate parallel program. Otherwise the previously developed general purpose parallel program construction algorithms are used. The control program constructs an executable representation of the input numerical algorithm at run-time. The executable representation of the input algorithm is a directed acyclic graph of single assignment variables and operations. This representation is then executed by the specialized run-time system. The specialized run-time system employs parallel programming techniques which are widely used in manual development of parallel preconditioners for sparse matrices. In order to assess the performance of parallel programs constructed using the developed specialized system algorithms, a test parallel program was automatically constructed from the description of sparse-vector multiply algorithm. The performance of the automatically constructed parallel program was compared to the
performance of implementation of the same algorithm from Intel MKL and Parallel Sparse BLAS libraries. Experimental results demonstrate that the performance of the automatically generated parallel program is comparable with the performance of the corresponding implementation from Intel MKL (the performance of the automatically constructed parallel program is only 15 % less than the performance of the matrix-vector multiply implementation from Intel MKL) . Also the constructed parallel program outperforms the implementation for Parallel Sparse BLAS library by approximately 10 %. These facts show that the LuNA system is practically applicable for automated construction of high performance distributed parallel programs for supercomputers in the sparse linear algebra field.