Volume 4(69)
Contents
M.P. Bakulina. AN EFFICIENT COMPRESSION ALGORITHM USING DICTIONARY-TYPE DATA TRANSFORMATION.
Institute of Computational Mathematics and Mathematical Geophysics SB RAS, 630090, Novosibirsk, Russia
AN EFFICIENT COMPRESSION ALGORITHM USING DICTIONARY-TYPE DATA TRANSFORMATION
DOI: 10.24412/2073-0667-2025-4-5-10
EDN: KUQHBT
The research was carried out within the framework of a state assignment of the Institute of Computational Mathematics and Mathematical Geophysics SB RAS (ICM&MG SB RAS) 0251-2022-0005.
References:
-
Burrows, M. A block sorting lossless data compression algorithm. M. Burrows, D. Wheeler, Technical Report 124, Digital Equipment Corporation, 1994. P. 18.
-
Ryabko B. Ya. Data compression by means of a “book stack” // Problems of Information Transmission. 1980, V. 16: (4). P. 265–269.
-
Hmelev D. V. Preobrazovanie Barrouza-Willera, massiv suffiksov i szhatie slovarei // Vse o szhatii dannyh, izobrazhenii i video. [Electron. Res.]: http://compression.ru/download/articles/ bwt/khmelev_2003_bwt.pdf.
-
K¨arkk¨ainen J., Sanders P. Simple linear work suffix array construction // In 30th International Colloquium on Automata, Languages and Programming, number 2719 in LNCS, 2003. P. 943–955.
Bibliographic reference: http://problem-info.sscc.ru/ru/node/142#1
Bredikhin, N.G. Scherbakova S. V.
Institute of Computational Mathematics and Mathematical Geophysics SB RAS, 630090, Novosibirsk, Russia
COMMUNITY DETECTION IN THE MULTIPLEX NETWORK OF SCIENTIFIC JOURNAL AUTHORS
DOI: 10.24412/2073-0667-2025-4-11-24
EDN: TWNDJO
This work was carried out under state contract with ICMMG SB RAS (FWNM-2025-0005).
References
-
Barab´asi A-L., P´osfai M. Network Science. Cambridge Univ. Press. 456 p. ISBN 1107076269.
-
Radicchi F., Castellano C., Cecconi F., Loreto V., Parisi D. Defining and identifying communities in networks // PNAS. 2004. V. 101. P. 2658–2663. DOI: 10.1073/pnas.0400054101.
-
Fortunato S. Community detection in graphs // Phys. Rep. 2010. V. 486, iss. 3–5. P. 75–174. DOI: 10.1016/j.physrep.2009.11.002.
-
Distel’ R. Teoriya grafov. Novosibirsk: Izd-vo In-ta matematiki, 2002. 336 s. ISBN 5-86134-101-X.
-
Peel L., Larremore D. B., Clauset A. The ground truth about metadata and community detection in networks // Sci. Adv. 2017. V. 3, iss. 5. e1602548. DOI: 10.1126/scadv.1602548.
-
Newman M. E. J. Modularity and community structure in networks // Proc. Natl. Acad. Sci. USA. 200 V. 103. P. 8577–8582. DOI: 10.1037/pnas.0601602103.
-
Newman M. E. J., Girvan M. Finding and evaluating community structure in networks // Phys. Rev. E. 2004. V. 69. 026113. DOI: 10.1103/PhysRevE.69. 026113.
-
Magnani M., Hanteer O., Interdonato R., Rossi L., Tagarelli A. Community detection in multiplex networks // arXiv: 0911.1824. DOI: 10.48550/arXiv.1910.07646.
-
Interdonato R., Tagarelli A., Ienco D., Sallaberry A., Poncelet P. Node-centric community detection in multilayer networks with layer-coverage diversification bias // Proc. of the 8th Conf. on Complex Networks. 2017. P. 57–66. Springer Intern. Publ., 2017. DOI: 10.48550/arXiv.1704.03441.
-
Jeub L. G. S., Mahoney M. W., Mucha P. J., Porter M. A. A local perspective on community structure in multilayer networks // Network Sci. 2017. V. 5, iss. 2. P. 144–163. DOI: 48550/arXiv.1510.05185.
-
Kim J., Lee J-G. Community detection in multi-layer graphs: A survey // ACM SIGMOD Record. 2015. V. 44, iss. 3. P. 37–48. DOI: 10.1145/2854006.2854012.
-
Huang X., Chen D., Ren T., Wang D. A survey of community detection methods in multilayer networks // Data Mining and Knowledge Discovery. 2021. V. 35. P. 1–45. DOI: 10.1007/s10618-020-00716-6.
-
Mucha P. J., Richardson T., Macon K., Porter M. A., Onnela J. P. Community structure in time-dependent, multiscale, and multiplex networks // Science. 2010. V. 328, iss. 5980. P. 876–878. DOI: 10.1126/science.1184819.
-
De Domenico M., Lancichinetti A., Arenas A., Rosvall M. Identifying modular flows on multilayer networks reveals highly overlapping organization in interconnected systems // Phys. Review. 2015. X 5, 011027. DOI: 10.1103/PhysRevX.5. 011027.
-
Afsarmanesh N., Magnani M. Finding overlapping communities in multiplex networks // Proc. of the 2018 Intern. conf. on Social Informatics, 2018. DOI: 10.48550/arXiv.1602.03746.
-
Bianconi G. Multilayer networks. Structure and functions. Oxford. 2018. Online ISBN: 9780191815676.
-
Lancichinetti A., Fortunato S. Consensus clustering in complex networks // Sci. Rep. 2012. V. 2. Art. num. 336. DOI: 10.1038/srep00336.
-
Mondragon R. J., Iacovacci J., Bianconi G. Multilink communities of multiplex networks // arXiv:1706.09011. DOI: 10.48550/arXiv.1706.09011.
-
De Domenico M., Sol´e-Ribalta A., Cozzo E., Kivel¨a M., Moreno Y., Porter M. A., G´omez S., Arenas A. Mathematical formulation of multilayer networks // Phys. Rev. 2013. X 3. 041022. DOI:10.1103/PhysRevX.3.041022.
-
Bredihin S. V., Shcherbakova N. G. Vzveshennaya mul’tipleksnaya set’ avtorov nauchnogo zhurnala // Probl. inform. 2025. N 1. S. 45–59. DOI: 10.24412/2073-0667-2025-1-45-59.
-
Bredihin S. V., Shcherbakova N. G. Strukturnye svojstva mul’tipleksnoj seti avtorov nauchnogo zhurnala // Probl. inform. 2025. N 2. S. 8–18. DOI: 10.24412/2073-0667-2025-2-5-18.
-
Boccaletti S., Bianconi G., Criado R., del Genio C. I., G´omez-Garden˜es J., Romance M., Sendin˜a-Nadal I., Wang Z., Zanin M. The structure and dynamics of multilayer networks // Phys. Rep. 2014. V. 544, iss, 1. P. 1–1 DOI: 10.1016/j.physrep.2014.07.001.
-
Wagner S., Wagner D. Comparing clusterings — An overview. 2007. DOI: 10.5445/IR/1000011477. https://publikationen.bibliothek.kit.edu/1000011477.
-
Collins L. M., Dent C. W. Omega: A general formulation of the Rand index of cluster recovery suitable for non-disjoint solutions // Multivariate Behav. Res. 1988. V. 23, iss. 2. P. 231–242. DOI: 10.1207/s15327906mbr2302_6.
-
Murray G., Carenini G., Ng R. Using the omega index for evaluating abstractive community detection // Proc. of Workshop on Evaluation Metrics and System Comparison for Automatic Summarization, Montr´eal (Canada), 2012. Assoc. for Comput. Linguistics. P. 10–18.
-
Hanteer O., Rossi L. The meaning of dissimilar: An evaluation of various similarity quantification approaches used to evaluate community detection solutions // Proc. of the IEEE/ACM Intern. conf. on Advances in Social Networks Analysis and Mining, Vancouver (Canada), 2019. P. 513–518. DOI: 10.1145/3341161.3342941.
-
Berlingerio M., Coscia M., Giannotti F. Finding and characterizing communities in multidimensional networks // Intern. conf. on Advances in Social Networks Analysis and Mining (ASONAM). P. 490–494. IEEE Computer Society Washington, DC, USA, 2011. DOI: 10.1107/ASONAM.2011.104.
-
Kim J., Lee J.-G., Lim S. Differential flattening: A novel framework for community detection in multi-layer graphs // ACM Trans. on Intell. Syst. and Technol. (TIST). 2016. V. 8, iss. 2. P. 27:1–27:23. DOI: 10.1145/2898362.
-
De Domenico M., Nicosia V., Arenas A., Latora V. Structural reducibility of multilayer networks // Nature Communic. 2015. V. 6. 6864. DOI: 10.1038/ncomms7864.
-
Bianconi G. Statistical mechanics of multiplex networks: entropy and overlap // Phys. Rev. E. 2013. V. 87, iss. 6. 062806. DOI: 10.1103/PhysRevE.87.062806.
-
Pons P., Latapy M. Computing communities in large networks using random walks. 2006. arXiv: physics/0512106. DOI: 10.48550/arXiv. physics/0512106.
-
Rosvall M., Axelsson D., Bergstrom C. T. Map equation. // Eur. Phys. J. 2009. V. 178. P. 13–23. DOI: 10.1140/epjst/e2010-01179-1.
A.R. Gerb, E.E. Deviatykh*, G.A. Omarova
COMPARISON OF FIRST, SECOND AND THIRD GENERATION GRAPH REDUCTION METHODS IN CHEMICAL KINETICS MODELS
DOI: 10.24412/2073-0667-2025-4-25-37
EDN: VBFMRT
Key words: graph, reduction, chemical kinetics model, DRG, DRGEP, PFA, GPS.
References:
-
Turanyi V. Reduction of large reaction mechanisms // New J. Chemistry. 1990. V. 14. N 1 P. 795–803.
-
Tomlin A. S., Pilling M. J., Turanyi T., Merkin J. H., Brindley J. Mechanism reduction for the oscillatory oxidation of hydrogen: sensitivity and quasi-steady-state analyses // Combust. and Flame. 199 V. 91. N 2. P. 107–130.
-
Massias A., et al. An algorithm for the construction of global reduced mechanisms with CSP data // Combust. and Flame. 1999. V. 117. N 4. P. 685–708.
-
Lu T., Ju Y., Law P. K. Complex CSP for chemistry reduction and analysis // Combust. and Flame. 2001. V. 126. N 1–2. P. 1445–1455.
-
Peters N. Flame calculations with reduced mechanisms — an outline / Reduced kinetic mechanisms for applications in combustion systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. P. 3–14.
-
Rabitz H., Kramer M., Dacol D. Sensitivity analysis in chemical kinetics // Annual Rev. of Phys. Chem. 1983. V. 34, N 1. P. 419–461.
-
Niemeyer K. E., Sung C.-J., Raju M. P. Skeletal mechanism generation for surrogate fuels using directed relation graph with error propagation and sensitivity analysis // Combust. and Flame. 2010. V. 157, N 9. P. 1760–1770.
-
Mauersberger G. ISSA (iterative screening and structure analysis) a new reduction method and its application to the tropospheric cloud chemical mechanism RACM/CAPRAM2.4 // Atmosph. Environ. 2005. V. 39, iss. 2324. P. 4341–4350.
-
Zeuch T., Moreac G., Ahmed S., Mauss F. A comprehensive skeletal mechanism for the oxidation of n-heptane generated by chemistry-guided reduction // Combust. and Flame. 2008. V. 155. P. 651–674.
-
Pepiot-Desjardins P., Pitsch H. An automatic chemical lumping method for the reduction of large chemical kinetic mechanisms // Combust. Theory and Modell. 2008. V. 12, iss. 6. P. 1089–1108.
-
Lu T., Law C. K. A directed relation graph method for mechanism reduction // Proc. of the Combust. Institute. 2005. V. 30, iss. 1. P. 1333–1341.
-
Sun W., Chen Z., Gou X., Ju Y. A path ux analysis method for the reduction of detailed chemical kinetic mechanisms // Combustion and Flame. 2010. V. 157, N 7. P. 1298–1307.
-
Pepiot-Desjardins P., Pitsch H. An efficient error-propagation-based reduction method for large chemical kinetic mechanisms // Combust. and Flame. 2008. V. 154, N 12. P. 6781.
-
Gao X., Yang S., Sun W. A global pathway selection algorithm for the reduction of detailed chemical kinetic mechanisms // Combust. and Flame. 2016. V. 167. P. 238–247. DOI: 10.1016/j.combustame.2016.02.007.
-
Dijkstra E. W. A note on two problems in connection with graphs // Numer. Math. 1959. V. 1. P. 269–271. https://doi.org/10.1007/BF01386390.
-
Yen J. Y. Finding the k shortest loopless paths in a network // Manag. Sci. 1971. V. 17. P. 712–7
-
Gerb A. R., Deviatykh E. E., Omarova G. A. Metody grafovoi reduktcii v modeliakh himicheskoi kinetiki // Probl. inform. 2024. N 3 (64).
-
Goodwin D. G., Moffat H. K., Speth R. L. Cantera: An object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes. [Electron. Res.]: http://www.cantera. org.
-
[Electron. Res.]: https://eigen.tuxfamily.org/index.php?title=Main_Page.
-
[Electron. Res.]: https://www.boost.org/doc/libs/1_83_0/doc/html/program_options. html.
-
[Electron. Res.]: https://github.com/jbeder/yaml-cpp.
-
The CRECK Modeling Group. Detailed kinetic mechanisms. [Electron. Res.]: http:// creckmodeling.chem.polimi.it/menu-kinetics/menu-kinetics-detailed-mechanisms/.
Institute of Computational Mathematics and Mathematical Geophysics SB RAS, 630090, Novosibirsk, Russia
GENERATION OF MULTI-LEVEL REGULAR NETWORKS BASED ON THE COMPOSITION OPERATION OF MODIFIED CHORDAL GRAPHS USING LARGE LANGUAGE MODELS
DOI: 10.24412/2073-0667-2025-4-38-51
EDN: VRVDCR
References:
-
Multilevel Network Analysis for the Social Sciences: Theory, Methods and Applications. Lazega, E., Snijders, T. (eds.). // Cham, Heidelberg: Springer. 2016.
-
Kivela M., Arenas A., Barthelemy M., Gleeson J. P., Moreno Y., Porter M. Multilayer Networks // Journal of Complex Networks. 2014. N 2 (3).
-
Kalney A. M. Modeli mnogourovnevyh setej (kratkij obzor) // Problemy informatiki. 2021. N P. 5–20.
-
Kalney A. M., Rodionov A. S. Analiz nadezhnosti mnogourovnevyh setej s nenadezhnymi vershinami // Problemy informatiki. 2020. N 2. P. 5–15.
-
Hwang F. K. A survey on multi-loop networks // Theoret. Computer Science. 2003. V. 299.
-
Reyes, M. A., Dalfo, C., Fiol, M. A. Structural and Spectral Properties of Chordal Ring, Multi-Ring, and Mixed Graphs // Symmetry, 2024. 1 1135.
-
Gutierrez J., Riaz T., Pedersen J., Labeaga S., Madsen O. Degree 3 networks topological routing // Image Processing and Communication. 2009. N 14.
-
Ledzinski, D., Smigiel, S., Zabludowski, L. Analyzing methods of network topologies based on chordal rings // Turkish Journal of Electrical Engineering and Computer Sciences. 201 V. 26: N 3, Article 25.
-
Monakhova, E. A., Monakhov, O. G. Metod avtomaticheskogo poiska semejstv optimal’nyh hordal’nyh kol’cevyh setej // Diskretnyj analiz i issledovanie operacij. 2024. N 1. P. 85–108.
-
Monakhova, E. A., Monakhov, O. G., Otkrytie analiticheskih zavisimostej parametrov optimal’nyh hordal’nyh setej na osnove analiza dannyh // Problemy informatiki. 2023. N 4.
-
Ahmad M., Zahid Z., Zavaid M., and Bonyah E. Studies of Chordal Ring Networks via Double Metric Dimensions // Math. Problems in Engineering. 2022. (ArticleID 8303242).
-
Arden B. W. and Lee H. Analysis of Chordal Ring Network // IEEE Trans. on Computers. 1981. N C-30.
-
Morillo P., Comellas F., Fiol M. A. The optimization of Chordal Ring Networks // Communication Technology, Eds. Q. Yasheng and W. Xiuying. World Scientific, 1987. P. 295–299.
-
Huang, X., Ramos, A. F., Deng, Y. Optimal circulant graphs as low-latency network topologies // J. of Supercomputing. 2022. N 78. P. 13491–13510.
-
Deng Y., Guo M., Ramos A. F., Huang X., Xu Z., Liu W. Optimal low-latency network topologies for cluster performance enhancement // J. Supercomput, 2020. N 76 (12). P. 9558–9584.
-
Monakhova E. A Survey on Undirected Circulant Graphs // Discrete Mathematics, Algorithms and Applications. 2012. N 4 (1). 1250002.
-
Monakhov O., Monakhova E. A Class of Parametric Regular Networks for Multicomputer Architectures // Computacion y Sistemas. 2000. N 4. P. 85–93.
-
Karpenko A. P. Sovremennye algoritmy poiskovoj optimizacii. Algoritmy, vdohnovlennye prirodoj // Moskva: MGTU im. N. E. Baumana, 2017.
M.A. Usova, I.G. Lebedev, A.A. Shtanyuk, K.A. Barkalov
Lobachevsky State University, 603022, Nizhny Novgorod, Russia
A GLOBAL OPTIMIZATION ALGORITHM FOR TUNING HYPERPARAMETERS OF MACHINE LEARNING METHODS
DOI: 10.24412/2073-0667-2025-4-52-72
EDN: XGFNEQ
References:
-
Zhou J. , Qiu Y., Zhu S., Armaghani D. J. , Li C., Nguyen H. , Yagiz S. Optimization of support vector machine through the use of metaheuristic algorithms in forecasting TBM advance rate // Eng. Appl. Artif. Intell. 202 V. 97. P. 104015.
-
Yang W., Xia K., Fan S., Wang L., Li T., Zhang J., Feng Y. A Multi-Strategy Whale Optimization Algorithm and Its Application // Eng. Appl. Artif. Intell. 202 V. 108. P. 104558.
-
Frazier P. I. A Tutorial on Bayesian Optimization // arXiv. 2018.
-
Archetti F., Candelieri A. Bayesian Optimization and Data Science. Cham: Springer Briefs in Optimization, 2019.
-
Jones D., Martins J. The direct algorithm: 25 years later // J. Glob. Optim. 2021. V. 79, N 3. P. 521–566.
-
Paulaviсius R. and Zilinskas J. Simplicial Global Optimization. New York: Springer, 2014.
-
Paulavicius R., Sergeyev Y. D., Kvasov D. E., Zilinskas J. Globally-biased BIRECT algorithm with local accelerators for expensive global optimization // Expert Syst. Appl. 2020. V. 144. P. 113052.
-
Sergeev Ya. D., Kvasov D. E. Diagonalnye metody globalnoj optimizacii. M.: Fizmatlit, 200
-
Liberti L., Kucherenko S. Comparison of deterministic and stochastic approaches to global optimization // Int. Trans. Oper. Res. 2005. V. 12. P. 263–285.
-
Sergeyev Y. D., Kvasov D. E., Mukhametzhanov M. S. On the efficiency of nature-inspired metaheuristics in expensive global optimization with limited budget // Sci. Rep. 2018. V. 8, N 1. P. 435.
-
Stripinis L., Paulavicius R. A new DIRECT-GLh algorithm for global optimization with hidden constraints // Optim. Lett. 2021. V. 15, N 6. P. 1865–1884.
-
Audet C., Batailly A., Kojtych S. Escaping unknown discontinuous regions in blackbox optimization // SIAM J. Optim. 2022. V. 32, N 3. P. 1843–1870.
-
Candelieri A. Sequential model based optimization of partially defined functions under unknown constraints // J. Glob. Optim. 2019. V. 79, N 2. P. 281–303.
-
Barkalov K. A., Strongin R. G. Metod globalnoj optimizacii s adaptivnym poryadkom proverki ogranichenij // Zhurn. vy‘chisl. matem. i matem. fiz. 2002. T. 42, N 9. S. 1338–1350.
-
Strongin R. G., Barkalov K. A., Bevzuk S. A. Global optimization method with dual Lipschitz constant estimates for problems with non-convex constraints // Soft Comput. 2020. V. 24, N 16. P. 11853–11865.
-
Sergeyev Y. D., Strongin R. G., Lera D. Introduction to Global Optimization Exploiting Space-Filling Curves. New York: Springer Briefs in Optimization, 2013.
-
Strongin R. G., Sergeyev Y. D. Global optimization with non-convex constraints. Sequential and parallel algorithms. Dordrecht: Kluwer Academic Publishers, 2000.
-
Usova M. A., Barkalov K. A. An Algorithm for Finding the Global Extremum of a Partially Defined Function // Communications in Computer and Information Science. 2024. V. 1914. P. 147–161.
-
Barkalov K. A., et al. On solving the problem of finding kinetic parameters of catalytic isomerization of the pentane-hexane fraction using a parallel global search algorithm // Mathematics. 2022. V. 10, N P. 3665.
-
Gubaydullin I. M., Enikeeva L. V., Barkalov K. A., Lebedev I. G., Silenko D. G. Kinetic modeling of isobutane alkylation with mixed c4 olefins and sulfuric acid as a catalyst using the asynchronous global optimization algorithm // Commun. Comput. Inf. Sci. 2022. V. 1618. P. 293–306.
-
Barkalov K. A., Lebedev I. G., Gergel V. P. Parallel Global Search Algorithm with Local Tuning for Solving Mixed-Integer Global Optimization Problems // Lobachevskii Journal of Mathematics. V. 7. N 42. 20 P. 1492–1503.
-
Sysoev A. V., Kozinov E. A., Barkalov K. A., Lebedev I. G., Karchkov D. A., Rodionov D. M. Frejmvork metodov intellektualnoj evristicheskoj optimizacii iOpt // V kn.: Superkompyuternye dni v Rossii: Trudy mezhdunarodnoj konferencii. 2023. S. 179–185.
-
Ishodnyj kod frejmvorka iOpt. [Electron. Res.]: https://github.com/aimclub/iOpt (data obrasheniya: 26.01.2025).
-
Dokumentaciya iOpt. [Electron. Res.]: https://iopt.readthedocs.io/ru/latest/ (data obrasheniya: 26.01.2025).
-
Gaviano M., Kvasov D. E., Lera D., Sergeyev Y. D. Software for generation of classes of test functions with known local and global minima for global optimization // ACM Trans. Math. Softw. 2003. V. 29, N 4. P. 469–480.
-
Storn R., Price K., Differential Evolution — a Simple and Efficient Heuristic for Global Optimization over Continuous Spaces // Journal of Global Optimization. 1997. V. 11. P. 341–359.
-
Xiang Y, Gubian S, Suomela B, Hoeng J. Generalized Simulated Annealing for Efficient Global Optimization: the GenSA Package for R // The R Journal. 2013. V. 5, N 1.
-
Gablonsky J., Kelley C. A Locally-Biased form of the DIRECT Algorithm // Journal of Global Optimization. 2001. V. 21. P. 27–37.
-
Wales D. J., Doye J. P. K. Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms // Journal of Physical Chemistry A. 1997. V. 101. P. 5111.
-
Endres S. C., Sandrock C., Focke W. W. A simplicial homology algorithm for lipschitz optimisation // Journal of Global Optimization. 2018.
-
Filippou K., Aifantis G., Papakostas G. A., Tsekouras G. E. Structure learning and hyperparameter optimization using an automated machine learning (AutoML) pipeline // Information. 2023. V. 14, N 4. P. 232.
-
Automated modeling and machine learning framework FEDOT. [Electron. Res.]: https:// github.com/aimclub/FEDOT (data obrashheniya: 25.07.2025).
-
Xu N. Time Series Analysis on Monthly Beer Production in Australia // Highlights in Science, Engineering and Technology. 2024. V. 94. P. 392–401.
-
Akiba T., Sano S., Yanase T., Ohta T., Koyama M. Optuna: A Next-Generation Hyperparameter Optimization Framework // In Proceedings: 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2019. P. 2623–2631.
Bibliographic reference: http://problem-info.sscc.ru/ru/node/142#5
V.E. Malyshkin******, V.A. Perepelkin******, V.A. Spirin***
AUTOMATIC PROGRAM CONSTRUCTION WITH ACCELERATORS USAGE BASED ON THE ACTIVE KNOWLEDGE CONCEPT IN LUNA SYSTEM
DOI: 10.24412/2073-0667-2025-4-73-88
EDN: ZCPPTC
Key words: active knowledge, LuNA system, accelerator, Huawei Ascend processor, automatic program construction, high-level specification, subsystem for accelerators support.
Supported by the state assignment of ICMMG SB RAS N FWNM-2025-0005.
References:
-
Malyshkin V. E. Active Knowledge, LuNA and Literacy for Oncoming Centuries // LNCS, V. 9465. 2015. P. 292–303. DOI: 10.1007/978-3-319-25527-9_19.
-
Malyshkin V. E., Perepelkin V. A. LuNA Fragmented Programming System, Main Functions and Peculiarities of Run-Time Subsystem // Proceedings of the 11th International Conference on Parallel Computing Technologies (PaCT-2011), LNCS, 2011. V. 6873, P. 53–61. DOI: 10.1007/978-3-642-23178-0_5.
-
Malyshkin V. E., Perepelkin V. A. Postroenie baz aktivnyh znanij dlya avtomaticheskogo konstruirovaniya reshenij prikladnyh zadach na osnove sistemy LuNA // Parallel’nye vychislitel’nye tekhnologii — XVIII vserossijskaya nauchnaya konferenciya s mezhdunarodnym uchastiem, PaVT’2024, g. Chelyabinsk, 2–4 aprelya 2024 g. Korotkie stat’i i opisaniya plakatov. Chelyabinsk: Izdatel’skij centr YUUrGU, 2024. P. 57–68. DOI: 10.14529/pct2024 (In Russian).
-
Liang X. Ascend AI Processor Architecture and Programming: Principles and Applications of CANN. Elsevier, 2020. DOI: 10.1016/C2020-0-00270-7.
-
Malyshkin V., Perepelkin V., Schukin G. Scalable Distributed Data Allocation in LuNA Fragmented Programming System // The Journal of Supercomputing, 2017. V. 73, Iss. 2, Springer. P. 726–732. DOI: 10.1007/s11227-016-1781-0.
-
Malyshkin V. E., Perepelkin V. A., Schukin G. A. Distributed Algorithm for Data Allocation in Luna Fragmented Programming System // “Problems of informatics”. 2017, N 1. P. 74–88.
-
Using Operator Samples [Electron. Res.]: https://www.hiascend.com/document/detail/zh/ CANNCommunityEdition/82RC1alpha001/opdevg/tbeaicpudevg/atlasopdev_10_0025.html.
-
AscendCL architecture and basic concepts [Electron. Res.]: https://www.hiascend.com/ document/detail/zh/CANNCommunityEdition/82RC1alpha001/appdevg/aclcppdevg/aclcppdevg_ 000004.html.
-
Spirin V. A. Razrabotka algoritmov avtomatizacii primeneniya NPU v sisteme LuNA// Parallel’nye vychislitel’nye tekhnologii — XVIII vserossijskaya nauchnaya konferenciya s mezhdunarodnym uchastiem, PaVT’2024, g. Chelyabinsk, 2–4 aprelya 2024 g. Korotkie stat’i i opisaniya plakatov. Chelyabinsk: Izdatel’skij centr YUUrGU, 2024. P. 165–176. DOI: 10.14529/pct2024 (In Russian).
-
Khairetdinov M. S. Algoritmy potochnoj svertki v zadachah aktivnogo vibrosejsmoakusticheskogo monitoringa / M. S. Khairetdinov, G. M. Voskobojnikova, G. S. Seduhina// Geosibir’, 2017 (In Russian).
-
Laboratoriya iskusstvennogo intellekta i informacionnyh tehnologiy (In Russian) [Electron. Res.]: https://icmmg.nsc.ru/ru/content/pages/laboratoriya-iskusstvennogo-intellekta-i-informacionnyh-tehnologiy.
-
Chen L. Deep learning and practice with mindspore. Springer Nature, 2021. DOI: 10.1007/978-981-16-2233-5.
-
Feng W., Maghareh R., Wang K. T. A. Extending DPC++ with Support for Huawei Ascend AI Chipset // International Workshop on OpenCL. 2021. P. 1–4. DOI: 10.1145/3456669.3456684.
-
Gu R., Becchi M. A comparative study of parallel programming frameworks for distributed GPU applications // Proceedings of the 16th ACM International Conference on Computing Frontiers. 2019. P. 268–273. DOI: 10.1145/3310273.3323071.
-
Robson M. P., Buch R., Kale L. V. Runtime coordinated heterogeneous tasks in Charm++ // 2016 Second International Workshop on Extreme Scale Programming Models and Middlewar (ESPM2). IEEE, 2016. P. 40–43. DOI: 10.1109/ESPM2.2016.011.
-
Bauer M. et al. Legion: Expressing locality and independence with logical regions // SC’12: Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis. IEEE, 2012. P. 1–11. DOI: 10.1109/SC.2012.71.
-
Augonnet C. et al. StarPU: a unified platform for task scheduling on heterogeneous multicore architectures // Euro-Par 2009 Parallel Processing: 15th International Euro-Par Conference, Delft, The Netherlands, August 25–28, 2009. Proceedings 15. Springer Berlin Heidelberg, 2009. P. 863–874. DOI: 10.1007/978-3-642-03869-3_80.
-
Ayguad´e E. et al. An extension of the StarSs programming model for platforms with multiple GPUs // Euro-Par 2009 Parallel Processing: 15th International Euro-Par Conference, Delft, The Netherlands, August 25–28, 2009. Proceedings 15. Springer Berlin Heidelberg, 2009. P. 851–862. DOI: 10.1007/978-3-642-03869-3_79.
Bibliographic reference: http://problem-info.sscc.ru/ru/node/142#6