1. Newman, M. E. J. Networks: An Introduction. Oxford: Oxford University Press, 2010.
2. Wasserman, S., Faust, K. Social Network Analysis: Methods and Applications. Cambridge: Cambridge University Press, 1994.
3. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.-U. Complex networks: structure and dynamics // Phys. Reps. 2006. N 424. P. 175--308.
4. Bollobas, B. Modern Graph Theory. Berlin: Springer, 1998.
5. Barabasi, A.-L., Albert, R. Emergence of scaling in random networks // Science. 1999. N 286. P. 509--512.
6. Clauset,A., Shalizi, C. R., Newman, M. E. J. Power-law distributions in empirical data // SIAM Rev. 2009. N 51. P. 661--703.
7. Watts, D. J., Strogatz, S. H. Collective dynamics of `small-world' networks. Nature. 1998. N 393. P. 440-442.
8. Porter, M. A. Small-world network // Scholarpedia. 2012. N 7. P. 1739.
9. Porter, M. A., Onnela, J.-P., Mucha, P. J. Communities in networks // Not. Am. Math. Soc. 2009. N 56. P. 1082-1097, 1164-1166.
10. Fortunato, S. Community detection in graphs // Phys. Reps. 2010. N 486. P. 75-174.
11. Lancichinetti, A., Kivela, M., Saramaki, J., Fortunato, S. Characterizing the community structure of complex networks. PLOS ONE. 2010. N 5. P. e11976.
12. Bang-Jensen, J., Gutin, G. Digraphs: Theory, Algorithms and Applications, 2nd edn. Berlin: Springer, 2008.
13. Barrat, A., Barthelemy, M., Pastor-Satorras, R., Vespignani, A. The architecture of complex weighted networks // Proc. Natl Acad. Sci. USA, 2004. N 101. P. 3747-3752.
14. Newman, M. E. J. Analysis of weighted networks // Phys. Rev. E, 2004. N 70. P. 056131.
15. Breiger, R. L. The duality of persons and groups // Social Forces, 1974. N 53. P. 181-190.
16. Holme, P., Saramaki, J. Temporal networks // Phys. Reps., 2012. N 519. P. 97-125.
17. Holme, P., Saramaki, J. (eds). Temporal Networks. Berlin: Springer, 2013.
18. Mikko Kivela, Alex Arenas, Marc Barthelemy, James P. Gleeson, Yamir Moreno, and Mason A. Porter. (2014), Multilayer networks // Journal of Complex Networks 2, 2014. N 3. P. 203-271.
19. D'Agostino, G., Scala, A. Networks of Networks: The Last Frontier of Complexity. Berlin: Springer, 2014.
20. Boccaletti, S., Bianconi, G., Criado, R., del Genio, C. I., Gomez-Gardenes, J., Romance, M., Sendina-Nadal, I., Wang, Z., Zanin, M. The structure and dynamics of multilayer networks // Phys. Reps., to appear. 2014.
21. Krackhardt, D. (1987) Cognitive social structures // Soc. Netw. 1987. N 9. P. 109--134.
22. Padgett, J. F., Ansell, C. K. Robust action and the rise of the medici, 1400--1434 // Am. J. Soc. 1993. N 98. P. 1259--1319.
23. Scott, J. Social Network Analysis. New York, NY: SAGE Publications, 2012.
24. Roethlisberger, F., Dickson,W. Management and the Worker. Cambridge: Cambridge University Press, 1939.
25. Gluckman, M. The Judicial Process Among the Barotse of Northern Rhodesia. Manchester: Manchester University Press, 1955.
26. Verbrugge, L. M. Multiplexity in adult friendships // Soc. Forces, 1979. N 57. P. 1286--1309.
27. Craven, P. , Wellman, B. (1973) The network city // Sociol. Inquiry. 1973. N 43. P. 57--88.
28. Pattison, P., Wasserman, S. Logit models and logistic regressions for social networks: II. Multivariate relations // Br. J. Math. Stat. Psychol. 1999. N 52. P. 169--193.
29. Lusher, D., Koskinen, J., Robins, G. Exponential Random Graph Models for Social Networks. Cambridge: Cambridge University Press, 2013.
30. Krackhardt, D., Carley, K. M. A PCANS model of structure in organization // International Symposium on Command and Control Research and Technology, Monterray, CA, 1998. P. 113--119.
31. Carley, K. M., Hill, V. Structural change and learning within organizations. Dynamics of Organizational Societies: Models, Theories and Methods (A. Lomi, ed.). Cambridge, MA: MIT Press/AAAI Press/Live Oak, 2001.
32. Lorrain, F., White, H. C. Structural equivalence of individuals in social networks // J. Math. Sociol. 1971. N 1. P. 49--80.
33. Boorman, S. A., White, H. C. Social structure from multiple networks. II. Role structures. Am. J. Sociol. 1976. N 81. P. 1384--1446.
34. Breiger, R. L., Pattison, P. E. Cumulated social roles: the duality of persons and their algebras // Soc. Netw. 1986. N 8. P. 215--256.
35. Doreian, P., Batagelj, V., Ferligoj, A. Generalized Blockmodeling. Cambridge, UK: Cambridge University Press, 2004.
36. White, H. C., Boorman, S. A., Breiger, R. L. Social structure from multiple networks. I. Blockmodels of roles and positions // Am. J. Sociol. 1976. P. 730--780.
37. Winship, C., Mandel, M. Roles and positions: a critique and extension of the blockmodeling approach // Sociol. Method. 1983--1984. N 14. P. 314--344.
38. Pattison, P. Social networks, algebraic models for. Encyclopedia of Complexity and Systems Science (R. A. Meyers ed.). New York: Springer, 2009. P. 8291--8306.
39. Dunlavy, D. M., Kolda, T. G., Kegelmeyer, W. P. Multilinear algebra for analyzing data with multiple linkages. Graph Algorithms in the Language of Linear Algebra (J. Kepner \& J. Gilbert eds). Fundamentals of Algorithms. Philadelphia: SIAM, 2011. P. 85--114.
40. Kolda, T. G., Bader, B. W. Tensor decompositions and applications. SIAM Rev. 2009. N 51. P. 455--500.
41. Acar, E., Yener, B. Unsupervised multiway data analysis: a literature survey // IEEE Trans. Knowl. Data Eng., 2009. N 91. P. 6--20.
42. Martin, C. D., Porter, M. A. The extraordinary SVD // Am. Math. Monthly. 2012. N 119. P. 838--851.
43. Kolda, T., Bader, B.W. The TOPHITS model for higher-order web link analysis // Proceedings of the SIAM Data Mining Conference Workshop on Link Analysis, Counterterrorism and Security, Bethesda, MD, 2006.
44. Kolda, T. G., Bader, B. W., Kenny, J. P. Higher-order web link analysis using multilinear algebra // Proceedings of the 5th IEEE International Conference on Data Mining (ICDM 2005), Houston, TX, 2005. P. 242--249.
45. Zhou, D., Orshanskiy, S. A., Zha, H., Giles, C. L. Co-ranking authors and documents in a heterogeneous network // Seventh IEEE International Conference on Data Mining (ICDM 2007), Omaha, NE, 2007. P. 739--744.
46. Cai, D., Shao, Z., He, X., Yan, X., Han, J. Community mining from multi-relational networks // Proceedings of the 9th European Conference on Principles and Practice of Knowledge Discovery in Databases, Porto, Portugal, 2005.
47. Sun, Y., Han, J. Mining heterogeneous information networks: a structural analysis approach // ACM SIGKDD Explor. Newslett. 2013. N 14. P. 20--28.
48. Carley, K. M. Dynamic network analysis. Dynamic Social Network Modeling and Analysis: Workshop Summary and Papers. Committee on Human Factors, National Research Council, 2003. P. 133--145.
49. Chang, S. E., Seligson, H. A., Eguchi, R. T. Estimation of the economic impact of multiple lifeline disruption: memphis light, gas and water division case study. Technical Report NCEER-96-0011, Multidisciplinary Center for Earthquake Engineering Research (MCEER), Buffalo, NY, 1996.
50. Little, R. G. Controlling cascading failure: understanding the vulnerabilities of interconnected infrastructures // J. Urban. Tech. 2002. N 9. P. 109--123.
51. Rosato, V., Issacharoff, L., Tiriticco, F., Meloni, S., Porcellinis, S., Setola, R. Modelling interdependent infrastructures using interacting dynamical models // Int. J. Crit. Infra. 2008. N 4. P. 63--79.
52. Khapugin, S., Rodionov, A. S. Modeling grouped failures in network reliability analysis // В ACM IMCOM 2015 - Proceedings [a44] (ACM IMCOM 2015 - Proceedings). 2015. Association for Computing Machinery, Inc. \url{
https://doi.org/10.1145/2701126.2701218}.
53. Leicht, E. A., D'Souza, R. M. Percolation on interacting networks. arXiv:0907.0894 [condmat. dis-nn]. 2009.
54. Buldyrev, S. V., Parshani, R., Paul, G., Stanley, H. E., Havlin, S. (2010) Catastrophic cascade of failures in interdependent networks // Nature. 2010. N 464. P. 1025--1028.
55. Vespignani, A. The fragility of interdependency // Nature. 2010. N 464. P. 984--985.
56. Dijkstra, F., Andree, B., Koymans, K., van der Hama, J., Grosso, P., de Laat, C. A multi-layer network model based on ITU-T G.805 // Comput. Netw. 2008. N 52. P. 1927--1937.
57. Rotaru, Sandra. Cross-layer design in wireless local area networks (WLANs) issues and possible solutions. 2018. 10.13140/RG.2.2.13913.77924.
58. Koster, A. M. C. A., Orlowski, S., Raack, C., Baier, G., Engel, T., Belotti, P. Branch-and-cut techniques for solving realistic two-layer network design problems // Graphs and Algorithms in Communication Networks. Springer, Heidelberg, 2009. P. 95--118.
59. Chigan, C., Atkinson, G., Nagarajan, R. On the modeling issue of joint cross-layer network protection/restoration // Proceedings of Advanced Simulation Technologies Conference (ASTC '04), 2004. P. 57--62.
60. Kurant, M., Thiran, P. Layered complex networks // Phys. Rev. Lett. 96, 2006. 138701-1--138701-4.
61. Popkov V. K. Matematicheskie modeli svyaznosti. Novosibirsk: IVMiMG SO RAN, 2006.
62. Popkov V. K., Sokolova O. D. Application of Hyper net Theory for the Networks Optimization Problems // 17th IMACS World Congress, July 2005, Paper T4-I-42-011.
63. Rodionov A. S., Sokolova O., Yurgenson A., Choo H. On Optimal Placement of the Monitoring Devices on Channels of Communication Network // ICCSA 2009, Part II, LNCS, Vol. 5593. 474487.
64. Rodionov A. S., Choo H., Nechunaeva K. A. Framework for Biologically Inspired Graph Optimization // Proceedings of ICUIMC 2011, Seoul, Republic of Korea, 2011. P. 2.5, 4 pages.
65. Popkov V. K. Primenenie teorii S-gipersetej dlya modelirovaniya sistem setevoj struktury // Problemy informatiki. 2010. N 4.
66. Popkov V. K. Matematicheskie modeli zhivuchesti setej svyazi. Novosibirsk: VC SO AN SSSR, 1990.
67. Popkov V. K. Metody optimizacii struktur zonovyh setej svyazi / V.K. Popkov, S. B. Kaul', M. I. Nechepurenko. Novosibirsk: VC SO AN SSSR, 1983.
68. Popkov V. K. Matematicheskie modeli i metody optimizacii gorodskih transportnyh sistem // Materialy 2-j Vseros. konf. Problemy optimizacii i ekonomicheskie prilozheniya'', Omsk, 29 iyunya 4 iyulya 2009 g. Omsk: B. i., 2009. S. 80--81.
69. Kalney A., Migov D., Rodionov A., Nasibullina T. Designing of optimal power supply networks for the equipment of multifunctional safety systems // Novosibirsk, Russia, The 2019 15th International Asian School-Seminar Optimization Problems of complex systems.
70. Kal'nej A. M., Rodionov A. S. Analiz nadezhnosti mnogourovnevyh setej s nenadezhnymi vershinami // Problemy informatiki. 2020. N 2. S. 5--15. DOI: 10.24411/2073-0667-2020-10005.
71. Rodionov A., Rodionova O. Random Hypernets in Reliability Analysis of Multilayer Networks. In: Mastorakis N., Bulucea A., Tsekouras G. (eds) Computational Problems in Science and Engineering // Lecture Notes in Electrical Engineering. 2015. V. 343. Springer, Cham. \url{
https://doi.org/10.1007/978-3-319-15765-8-17}.
72. Garbuzov, A. S. Rodionov. Some Problems of Fuzzy Modeling of Telecommunications Networks // Proc. of the 9 Int. Conf. on Ubiquitous Information Management and Communication, (IMCOM), Indonesia, Bali, 8--10 Jan. New York : ACM, 2015. P. 12.1--12.5. DOI: 10.1145/2701126.2701216. ISBN: 978-1-4503-3377-1. S. 418--422.
73. Hammoud, Zaynab, Kramer, Frank. Multilayer networks: aspects, implementations, and application in biomedicine. Big Data Analytics. 2020. 5. 10.1186/s41044-020-00046-0.
74. Kinsley Amy C., Rossi Gianluigi, Silk Matthew J., VanderWaal Kimberly. Multilayer and Multiplex Networks: An Introduction to Their Use in Veterinary Epidemiology. Frontiers in Veterinary Science, 2020, P. 596.
75. Sole-Ribalta, Albert \& Gomez, Sergio \& Arenas, Alex. Congestion Induced by the Structure of Multiplex Networks // Physical Review Letters. 2016. 116. 10.1103/PhysRevLett.116.108701.
76. Zhang, Shuai \& Liang, Man-Gui \& Li, Hui-Jia. Method to enhance traffic capacity for two-layer complex networks // Canadian Journal of Physics. 2014. N 92. P. 1599--1605. 10.1139/cjp-2013-0711.
77. Wu, Jiexin, Pu, Cunlai \& Li, Lunbo \& Cao, Guo. Traffic dynamics on multilayer networks // Digital Communications and Networks. 2018. N 6. 10.1016/j.dcan.2018.10.011.
Institute of Computational Mathematics and Mathematical Geophysics SB RAS, 630090, Novosibirsk, Russia,
* Center for Project Development Petersburg Real Estate LLC, 196066, St. Petersburg, Russia
Analysis of network reliability is extremely important for their design and operation. For various types of networks, various models have been proposed that take into account network particular features, within which different indicators of network reliability are considered. As a rule, random graphs in various modifications are taken as a basis. Usually, the probability of connectivity of the corresponding random graph in the case of unreliable edges that fail independently and absolutely reliable nodes is used as an indicator of network reliability.
The problems of exact calculating of various reliability indicators are NP-hard. When network elements are subject to dependent failure, reliability analysis becomes a much more time consuming task. A typical example of dependent network failures is cascading failures in power networks. The initiating event of the failure propagation process is caused by external circumstances: it can be a fallen tree, a strong gust of wind, a line break due to overload, etc. If its failure caused overloading of other lines or equipment, then this, in turn, can generate new outages, etc. Thus, a sequence of dependent failures occurs.
An important property of cascade outages in power grids is both their locality and their non-locality, as practice shows. The examples of real cascading outages show that there is a failure of lines along the sections that cut off certain subnets. Such scenarios for the propagation of cascading failures are explained by the fact that the failure of a power transmission line leads to an almost instantaneous redistribution of electricity to other power transmission lines, primarily to those lines that are included in the cut with the failed one. This paper proposes a model for the propagation of dependent failures in a network along its structural cuts.
As a structural model of a power grid, we consider an undirected graph G = (V, E), where V is the set of vertices, and E is the set of edges of the graph G. Let the presence probability be given for each edge. We will interpret this value as the probability of failure-free operation of the corresponding transmission line within a given time interval. If a failure occurs, then a cascade failure begins along the network cuts, the development of which is described by influence graphs. In this case, it is assumed that the vertices are absolutely reliable, i.e. are present with probability equal to 1.
In such conditions, several characteristics are considered as indicators of power network reliability: the probability of network connectivity, the probability of each consumer can connect to any power center, the probability of the availability of any power source for a given proportion of consumers. The last indicator can be more informative than the previous ones when considering a power grid of large dimension, for example, on a national scale, or several countries, if the corresponding networks are interconnected.
The article proposes an algorithm for the accurate calculation of reliability indices, based on the use of the total probability formula, and an estimation algorithm, based on the Monte Carlo approach. In addition, a method of cumulative updating of the bounds of reliability indicators is proposed, which makes it possible to make a conclusion about the sufficient reliability (or unreliability) of a network in relation to a given threshold.
The pseudocodes of the proposed algorithms and the results of numerical experiments are given.