1. Vianna E., Comarela G., Pontes T., Almeida J., Almeida V., Wilkinson K., Kuno H., Dayal U. Analytical performance models for mapreduce workloads // International Journal of Parallel Programming, 2013, 41(4):495-525.
2. Rizk A., Poloczek F., Ciucu F. Stochastic bounds in Fork-Join queueing systems under full and partial mapping. Queueing Systems, 2016. 83(3-4):261-291.
3. Nguyen M., Alesawi S., Li N., Che H., Jiang H. ForkTail: A black-box fork-join tail latency prediction model for user-facing datacenter workloads // HPDC 2018 — Proceedings of the 2018 International Symposium on High-Performance Parallel and Distributed Computing, 2018. P. 206¬217.
4. Enganti P., Rosenkrantz T., Sun L., Wang Z., Che H., Jiang H. Forkmv: Mean-and-variance estimation of fork-join queuing networks for datacenter applications // 2022 IEEE International Conference on Networking, Architecture and Storage (NAS), 2022. P. 1-8.
5. Flatto L., Hahn S. Two Parallel Queues Created By Arrivals With Two Demands I // SIAM Journal on Applied Mathematics, 1984. 44(5): 1041-1053.
This publication has been supported by RSF project No. 22-49-02023.
6. Nelson R. D., Tantawi A. N. Approximate analysis of fork/join synchronization in parallel queues // IEEE Trans. Computers, 1988. 37:739-743.
7. Kim C., Agrawala A. K. Analysis of the Fork-Join Queue // IEEE Transactions on Computers, 1989. 38(2):250-255.
8. Varm S., Makowski A. M. Interpolation approximations for symmetric Fork-Join queues. Performance Evaluation, 1994. 20(l-3):245-265.
9. Lui J. C. s., Muntz R., Towsley D. Computing performance bounds for fork-join queueing models. 08 2001.
10. Balsamo S., Donatiello L., Van Dijk N. M. Bound performance models of heterogeneous parallel processing systems // IEEE Transactions on Parallel and Distributed Systems, 1998. 9(10):1041 1056.
11. Lebrecht A. S., Knottenbelt W. J. Response time approximations in fork-join queues. 2007.
12. Thomasian A. Analysis of fork/join and related queueing systems // ACM Computing Surveys, 2014, 47(2).
13. Jiang L., Giachetti R. E. A queueing network model to analyze the impact of parallelization of care on patient cycle time // Health Care Management Science, 2008. 11(3):248-261.
14. Armony M., Israelit S., Mandelbaum A., Marmor Y. N., Tseytlin Y., Yom-Tov G. B. On patient flow in hospitals: A data-based queueing-science perspective // Stochastic Systems, 2015. 5(1) :146 194.
15. Narahari Y., Sundarrajan P. Performability analysis of fork-join queueing systems // Journal of the Operational Research Society, 1995. 46(10):1237-1249.
16. Gallien J., Wein L. M. A simple and effective component procurement policy for stochastic assembly systems // Queueing Systems, 2001. 38(2):221-248.
17. Kemper B., Mandjes M. Mean sojourn times in two-queue fork-join systems: Bounds and approximations // OR Spectrum, 2012. 34(3/723-742.
18. Schol D., Vlasiou M., Zwart B. Large Fork-Join Queues with Nearly Deterministic Arrival and Service Times // Mathematics of Operations Research, 2022. 47(2):1335-1364.
19. Qiu Z., Perez J. F., Harrison P. G. Beyond the mean in fork-join queues: Efficient approximation for response-time tails // Performance Evaluation, 2015. 91:99-116.
20. Klimenok V. I. Performance characteristics of the fork-join queuing system // Informatics, 2023. 20(3):50-60.
21. Marin A., Rossi S. Power control in saturated fork-join queueing systems // Performance Evaluation, 2017. 116:101-118.
22. Lee K., Shah N.B., Huang L., Ramchandran K. The MDS queue: Analysing the latency performance of erasure codes // IEEE Transactions on Information Theory, 2017. 63(5):2822-2842.
23. Wang W., Harchol-Balter M., Jiang H., Scheller-Wolf A., Srikant R. Delay asymptotics and bounds for multi-task parallel jobs // SIGMETRICS Perform. Eval. Rev., jan 2019, 46(3):2-7.
24. Nguyen M., Alesawi S., Li N., Che H., Jiang H. A black-box fork-join latency prediction model for data-intensive applications // IEEE Transactions on Parallel and Distributed Systems, 2020. 31(9):1983 2000.
25. Vishnevsky V., Gorbunova A. V. Application of Machine Learning Methods to Solving Problems of Queuing Theory // Communications in Computer and Information Science, 2022. 1605 CCIS:304- 316.
26. Gorbunova A. V., Vishnevsky V. M. Estimating the response time of a cloud computing system with the help of neural networks / / Advances in Systems Science and Applications, 2020. 20(3): 105 112.
27. Vishnevsky V., Klimenok V., Sokolov A., Larionov A. Performance Evaluation of the Priority Multi-Server System MMAP/PH/M/N Using Machine Learning Methods // Mathematics, 2021. 9(24).
28. Efrosinin D., Vishnevsky V., Stepanova N. Optimal Scheduling in General Multi-Queue System by Combining Simulation and Neural Network Techniques // Sensors, 2023. 23(12).
29. Dieleman N. A., Berkhout J., Heidergott В. A neural network approach to performance analysis of tandem lines: The value of analytical knowledge // Computers and Operations Research, 2023. 152:106124.
30. Lucantoni D. M. New results on the single server queue with a batch markovian arrival process // Communications in Statistics. Stochastic Models, 1991. 7(1):1—46.
31. Dudin A. N., Klimenok V. I., Vishnevsky V. M. The theory of queuing systems with correlated flows. The Theory of Queuing Systems with Correlated Flows, 2019. P. 1-410.
32. Neuts M. F. Matrix-geometric solutions in stochastic models. The Johns Hopkins University Press, 1981, Baltimore.
33. Ozawa T. Sojourn time distributions in the queue defined by a general QBD process // Queueing Systems, 2006. 53(4):203-211.
34. Horvath G. Efficient analysis of the queue length moments of the MMAP/MAP/1 preemptive priority queue. Performance Evaluation, 2012. 69(12):684-700.
35. Vishnevsky V., Larionov A., Ivanov R., Semenova O. Estimation of IEEE 802.11 DCF access performance in wireless networks with linear topology using ph service time approximations and map input // 2017 IEEE 11th International Conference on Application of Information and Communication Technologies (AICT), 2017. P. 1-5.
36. Gordon A.D., Breiman L., Friedman J.H., Olshen R. A., Stone C.J. Classification and Regression Trees // Biometrics, sep 1984. 40(3):874.
37. Friedman J.H. Stochastic gradient boosting // Computational Statistics and Data Analysis, feb 2002. 38(4):367-378.
38. Kingma D. P., Ba J. Adam: A method for stochastic optimization // International Conference on Learning Representations, dec.